
BOREAL ENVIRONMENT RESEARCH 9: 37–53 ISSN 1239-6095
Helsinki 27 February 2004 © 2004

Meromixis as a part of lake evolution — observations and a 
revised classification of true meromictic lakes in Finland

Anu Hakala

Department of Geology, Division of Geology and Palaeontology, P.O. Box 64 (Gustaf Hällströmin 
katu 2), FIN-00014 University of Helsinki, Finland (e-mail: anu.hakala@helsinki.fi)

Hakala, A. 2004: Meromixis as a part of lake evolution; observations and a revised classification of 
true meromictic lakes in Finland. Boreal Env. Res. 9: 37–53.

Based on Finnish lakes, meromixis is viewed from a paleolimnological perspective 
as a part of lake evolution. The study concludes that theoretical search of meromictic 
lakes is almost impossible, due to inconsistent and insufficient basic data and the com-
plexity of meromixis as a phenomenon. An estimation of possible Finnish meromictic 
lakes turned out to be a few dozen. Meromictic lakes are more numerous than formerly 
expected, but still rare. Based on the present estimation, only one lake in 800 is truly 
meromictic. Their most probable geographical location, besides the coastal lakes, 
are the Salpausselkä end-moraine zone and the areas between the Salpausselkä zone, 
Ostrobothnia, the Kainuu Region, and the eastern border of Finland. Terminology con-
cerning holomixis/meromixis is presently confusing and this study favors a strict use 
of the term meromictic and grouping complete and incomplete holomictic lakes as one 
group and true meromictic as another. The revised classification recognizes meromixis 
that has resulted from (1) flow/precipitation of saline water over freshwater or fresh-
water over saline water, (2) superficial diffuse nutrient load and/or turbidity currents 
from the catchment, (3) subsurface inflow of groundwater, (4) inadequate mixing due 
to the lake morphology and surrounding topography.

Introduction

Lakes can be classified as holomictic or mero-
mictic. In holomictic lakes, the water body cir-
culates at least once a year due to homothermal 
conditions, and mixing is complete or partial. 
The circulation homogenizes oxygen and nutri-
ent concentrations throughout the water mass. 
In Finland, as well as elsewhere in the northern 
temperate zone, lakes usually circulate twice a 
year, and are therefore called dimictic.

Recent studies have revealed the frequency 
of meromictic periods in lake evolution (e.g. 
Salonen et al. 1984, Kjensmo 1988, Hickman 
and White 1989, Radle et al. 1989, Hickman 

et al. 1990, Simola 1990, Barland 1991, Mees 
et al. 1991, Rask et al. 1992, 1993, Kennedy 
1994, Sack and Last 1994, Schenk et al. 1994, 
Lindholm 1995, Valero-Garcés and Kelts 1995, 
Hodgson et al. 1996, 1998, Tracey et al. 1996, 
Löffler 1997, Melack and Jellison 1998, Schmidt 
et al. 1998, Hodgson 1999, Hongve 1999, 2002, 
Hollibaugh et al. 2001, Jellison and Melack 
2001, Lotter 2001, Ojala 2001).

In Finland, and in similar lake regions with a 
high rate of isostatic land uplift, lake evolution 
is fast. The first meromictic phase usually occurs 
at the birth of a lake, when a marine or brackish-
water bay changes into an isolated freshwater 
basin (e.g. Lindholm 1975a). During maturation, 
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lakes tend to become holomictic; most lakes at 
northern temperate latitudes are dimictic (e.g. 
Lewis 1983). Water circulation can later be 
altered due to varying environmental changes, 
the most important of which are human interfer-
ence and climatic change. Anthropogenic influ-
ence has frequently transformed the circulation 
status of many lakes due to eutrophication and 
pollution (e.g. Kjensmo 1997), and engineered 
construction (e.g. Hodgson et al. 1996). Natural 
transitions between holomixis and meromixis 
have also occurred as a result of altered tempera-
ture and humidity (e.g. Löffler 1997).

The first list of known meromictic lakes of the 
world was compiled by Yoshimura (1937). The 
list comprised 44 lakes, mainly situated in Japan 
and Europe. In Scandinavia, studies on meromic-
tic lakes were carried out extensively, especially 
in Norway (e.g. Strøm 1945, 1957, 1962, Holtan 
1965, Kjensmo 1967, 1968, Hongve 1980). A 
list of meromictic lakes compiled by Walker and 
Likens (1975) comprised 121 meromictic lakes 
around the world. The number of lakes classi-
fied as meromictic continues to increase. In a 
survey in North America, Anderson et al. (1985) 
were able to identify about 100 lakes that are, or 
are likely to be, meromictic. In a small area in 
southeast Norway, nine meromictic lakes were 
observed (Bremmeng and Kloster 1976, Hongve 
1980, 2002). In Finland, only a dozen meromic-
tic lakes have been identified so far. However, in 
palaeolimnology the interest of meromixis has 
grown along with that of annually laminated sed-
iments. Sediment records from meromictic lakes 
may consist of annually laminated or varved sedi-
ments that provide a variety of chronological and 
high-resolution data concerning the immediate 
surroundings of lakes and watersheds (e.g. Ojala 
2001). To examine such sediments, meromictic 
lakes must first be identified, and their origin 
and history thoroughly investigated. The rarity of 
meromixis makes such studies potentially attrac-
tive. After all, meromictic lakes are almost as rare 
geological phenomenona as metorite craters!

The number of identified meromictic lakes 
in Finland is small, and therefore a theoretical 
estimation of the real number and occurrence 
was made in this study. The confusing terminol-
ogy of meromixis was discussed and a strict use 
of the term meromictic was recommended. A 

classification for Finnish meromictic lakes was 
revised based on Hutchinson (1937) and Walker 
and Likens (1975).

Definitions of meromixis

Meromictic lakes are chemically stratified with 
an incomplete circulation. Findenegg (1935) first 
introduced the word meromictic as a divergence 
from holomictic. In a meromictic lake, the water 
mass is permanently stratified into two layers 
that do not interact with each other. Circulation 
is possible only within a restricted layer, which 
prevents overturn from top to bottom.

Overturns are possible because water density 
changes with temperature. In meromictic lakes, 
thermal convection aided by wind action is too 
weak to break the stratification. This may be 
because of reduced wind action due to shelter-
ing topography, forests or lake morphology, 
or because of these effects being overcome by 
stronger stabilizing forces. A rise in density is a 
stabilizing force that can result from changes in 
water temperature or electrolyte concentration. In 
a meromictic lake, the mixing can occur only to 
a depth where the mixing forces are greater than 
the stabilizing forces. At this depth, a transition 
zone develops, which Hutchinson (1937) named 
a chemocline. The layer below the chemocline 
was defined as a monimolimnion by Findenegg 
(1935) and the layer above as a mixolimnion by 
Hutchinson (1937).

The division between holomictic and mero-
mictic was initially based on whether complete 
mixing had occurred in a lake at least once a year 
(Findenegg 1935). Despite the fact that complete 
mixing never occurs in a meromictic lake sensu 
stricto, the term meromictic later included lakes 
with irregular mixings and stratification periods. 
Other terms in use are e.g. semi-meromictic, 
temporary meromictic, periodic meromictic and 
spring meromictic; all found in Finnish lakes. 
Walker and Likens (1975) also used the term 
meromictic sensu lato and included lakes show-
ing permanent stratification most years (> 50%). 
For distinction, Miracle et al. (1993) used the 
term extreme meromixis for meromictic lakes, 
where the chemocline is sharp. It is important to 
clarify definitions concerning meromictic lakes 
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(e.g. Tyler and Vyverman 1995), although there 
are opinions claiming that distinctions between 
holomictic lakes with irregular mixing and 
meromictic lakes are impractical (Hongve 2002). 
Another view considers holomictic lakes with 
complete or irregular mixing as one group and 
meromictic as another. If a separation between 
different kinds of holomictic lakes is needed, 
H. Simola (pers. comm.) has proposed the term 
“incomplete holomixis” for lakes with irregular 
circulation resulting in fluctuating conditions. 
This would restrict the term meromixis for mero-
mictic lakes sensu stricto and eliminate confu-
sion. Nevertheless, here I use the term meromic-
tic in the strict sense of the word.

Classifications of meromixis

Findenegg (1937) classified meromictic lakes 
as having either static or dynamic origin. In 
the static type, the water layers primarily differ 
in densities due to the geological environment. 
In the dynamic type, the layers are primarily 
homogeneous, but the external mixing agents 
cannot overcome the internal resisting forces. 
Yoshimura (1937) divided meromictic lakes 
into three categories: biochemical stratification, 
non-biochemical stratification and combined 
stratification of biochemical and non-biochemi-
cal origin. The biochemical stratification is of 
the same type that Findenegg called dynamic. 
Through biochemical reactions, the primarily 
homogeneous water mass becomes heteroge-
neous and separated into two layers which the 
mixing agents cannot homogenize. The non-bio-
chemical stratification is approximately equiva-
lent to Findenegg’s static category.

The most commonly used classification 
of meromixis was introduced by Hutchinson 
(1937): (1) Ectogenic meromictic lakes, where 
the meromictic condition is initiated by some 
external superficial event (e.g. saline water 
intrusion), which, acting for a limited time, 
leaves the lake in a chemically stratified condi-
tion. Unless the event reoccurs, the lake changes 
into holomictic after some period of time; (2) 
Crenogenic meromictic lakes, where submerged 
mineralized springs bring a continuous supply of 
denser water into the lower stratum of the lake; 

(3) Biogenic meromictic lakes, where the elec-
trolyte concentration in the lower strata increases 
due to decomposition of organic material at the 
bottom of the lake.

Walker and Likens (1975) introduced a 
twofold classification by expanding the original 
Hutchison’s (1937) division. They recognized 
a meromixis originating primarily from factors 
external to the lake basin (ectogenic meromixis) 
and another meromixis where internal factors 
were most important (endogenic meromixis) 
(Fig. 1.).

The comparison between classifications 
of Hutchinson (1937) and Walker and Likens 
(1975) is presented in Fig. 1 to clarify the 
confusions and difficulties in the classifying 
of meromixis. The greatest difficulty concerns 
biogenic meromixis sensu Hutchinson (1937), 
or types I, II and IV meromixis sensu Walker 
and Likens (1975). It is a question of stability. 
If a meromixis state that has started from an 
ectogenic (type I) event remains stable, it is con-
sidered biogenic (type IV), not ectogenic (type 
I). Similarly, if a meromixis state that has started 
from a type II event remains stable, it is consid-
ered biogenic (type IV), not type II. Only if the 
holomictic state returns after the event passes, 
was the meromixis considered as ectogenic 
(types I and II). The classifications do not pay 
enough attention to the primary initiating cause 
itself. Biogenic meromixis is not an independ-
ent category but a secondary cause: irrespec-
tive of the process by which a meromixis has 
developed, the development leads to permanent 
stratification which eventually results in anaero-
bia. In anaerobic conditions, electrolyte concen-
tration increases due to decomposition of organic 
material, and this is the definition of biogenic 
meromixis. It is often expressed in the literature 
that (the primary) factors which have lead to bio-
genic (type IV) meromixis are difficult to define. 
It seems that the biogenic (type IV) is a left-over 
category for lake cases where the primary cause 
is difficult to comprehend. Therefore, the modi-
fied classification based on Hutchinson (1937) 
and Walker and Likens (1975) categorize mero-
mictic lakes by only the original primary factor 
that initiated the meromictic processes (Table 1). 
The classification includes four principle groups 
that can be further divided into subgroups.



40 Hakala • BOREAL ENV. RES. Vol. 9

Meromictic lakes in Finland

Lakes in Group 1: salinity gradient

The lakes in this group comprise coastal basins, 
lagoons and lakes along the coasts of the Gulf of 

Bothnia and the Åland Islands (Fig. 2). They were 
formed as a result of land uplift, when brackish or 
marine bays were completely or partly isolated 
and became independent basins. Brackish or salt 
water has either been captured in the new basin, 
or the basin is still in contact with the sea, receiv-
ing occasional brackish water pulses. Denser 
brackish water forms the monimolimnion, which 
is overlaid by a mixolimnion of freshwater from 
watershed and precipitation. Basins which have 
permanently lost their connection to the sea tend 
to become holomictic over time. Limnic evolu-
tion is relatively fast in coastal lakes, which 
results in rapid changes in circulation status and, 
ultimately in holomictic conditions. Bagge and 
Tulkki (1967), Bonsdorff and Storberg (1990), 
Eriksson and Lindholm (1985), Helminen (1978), 
Karlsson et al. (1981), Lindholm (1975a, 1975b, 
1975c, 1975d, 1975e, 1976, 1978a, 1978b, 1979, 
1982a, 1982b, 1995), Lindholm and Eriksson 
(1990), Räsänen (1983), Sundblom (1964), Sun-
dblom and Moliis (1962), Wikgren (1965), Wik-
gren et al. (1961). Table 2 shows morphometrical 
and hydrological properties and a summary of 
the meromixis history of the lakes studied by the 
above-mentioned authors.

In addition to these Group 1 lakes, many 
deep coastal lakes, basins and bays, such as 
Inre Verviken, Kaldersfjärden, Holmsjön (e.g. 
Lindholm 1975a, 1975c, 1982a, 1995, 1996, 
Lindholm et al. 1985), Bolstaholmssundet and 
Borgsjön (Lindholm 1991; T. Lindholm pers. 
comm.) on the Åland Islands, Kärinsviken and 
Gyltöträsk (Bagge and Tulkki 1967) on Nauvo 
and Korppoo, SW archipelago, and Gennarby-
viken in the Tenhola area (Räsänen and Tolonen 
1983; K. Tolonen pers. comm.), show fluctuating 
circulation tendencies.

Lakes in Group 2: oxygen defiance by 
load

This forms the largest group of meromictic 
lakes in Finland (Fig. 2). The group is also het-
erogeneous, but common classifying factors are 
superficial runoff that is a mix of diffuse nutri-
ent load and turbidity currents from dry land 
(mainly of anthropogenic origin) and/or from 
bogs (mainly of natural origin). Other common 

Walker & Likens(1975)

Ectogenesis

type I

type II

type III

Endogenesis

type IV

type V

Hutchinson (1937)

Ectogenic

Crenogenic

Biogenic

Obvious or strong
relationship

Ambiguous or weak
relationship

Fig. 1. Comparison between classifications of Walker 
and Likens (1975) and Hutchinson (1937). The solid 
lines indicate the obvious relationship between the 
original classification (Hutchinson 1937) and its expan-
sion (Walker and Likens 1975). The dashed lines indi-
cate the ambiguous relationships that exist. Walker 
and Likens (1975) include five categories (I–V). Ecto-
genesis is divided into three types, I, II and III. Type I 
resembles Hutchison’s ectogenic meromixis and it is 
subdivided into type Ia, which refers to coastal situa-
tions where marine or brackish water contact freshwa-
ter, and type Ib, which refers to inland situations. Type 
Ib correlates with Hutchinson’s biogenic type, because 
a part of the lakes in the biogenic group initiates from 
ectogenic inflow (Hutchinson 1957: p. 482). Type II 
develops due to surface inflow of turbidity currents, a 
definition that also places it into Hutchinson’s category 
of biogenic lakes, because a part of the lakes in the 
biogenic group initiates from turbidity currents (Hutchin-
son 1957: p. 489). Type III resembles Hutchinson’s 
crenogenic meromixis. Endogenesis is divided into two 
types, IV and V. Type IV resembles Hutchison’s bio-
genic meromixis in the sense of accumulation of salts 
liberated from the sediments. Type V develops due to 
deep water accumulation of salt precipitated by freez-
ing out from a surface ice layer. When categories are 
combined, the relationships lead to confusion, because 
biogenic meromixis and type IV meromixis are not inde-
pendent categories but secondary causes in meromixis 
development.
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factors for all these lakes, which can be classified 
as biogenic lakes sensu Hutchinson (1937), are 
related to their morphology, i.e. small area and 
great depth, locations sheltered by topography 
and/or vegetation, continental climate (Hutchin-
son 1957), increased water colour, and shallow 
thermoclines (Hongve 2002). Many lakes in this 
group are either groundwater or seepage lakes. 
Morphometrical and chemical properties of 
these lakes are outlined in Table 3.

Humic forest lakes

The formation of humic forest lakes is closely 
linked to a cooling and moistening climate 
during the Sub-Boreal and especially the Sub-
Atlantic periods (Donner 1995 and references 
therein) when catchments were characterized 
by paludification, coniferous forest domination 
and maturing of podsol soils. In Finland, the 
lake type has been extensively investigated in 
the Lammi area (e.g. Arvola 1983, 1986, Salo-
nen et al. 1983, 1984, 1992a, 1992b, Jones and 
Arvola 1984, Rask and Arvola 1985, Rask et 
al. 1985, 1986, 1992, 1993, Arvola et al. 1986, 
1987, 1990a, 1990b, 1992, Salonen and Arvola 
1988, Smolander and Arvola 1988, Arvola and 
Kankaala 1989, Kuuppo-Leinikki and Salo-
nen 1992, Salonen and Lehtovaara 1992). The 

lakes are typically small (< 0.3 km2), relatively 
deep, dark-coloured, humic and acidic, and 
surrounded by bogs and sheltering coniferous 
forests. Sheltering forests combined with a small 
area/depth ratio and quick thermal stratification 
due to improved solar energy adsorption by 
humic water (Jones and Arvola 1984) reduce the 
mixing potential of the lakes. However, inflow-

Table 1. Revised classification of meromictic lakes based on Hutchinson (1937) and Walker and Likens (1975) for 
Finnish meromictic lakes.

Group Meromixis

1 salinity gradient Results from inflow or precipitation of saline water (or solid salts) over freshwater or
 freshwater over saline water (ectogenic and biogenic sensu Hutchinson (1937), since
 a part of biogenic meromixis initiates from ectogenic inflow). This group can be
 subdivided into (a) coastland, (b) inland and (c) cryogenic [sensu Goldman et al.
 (1972)] situations.

2 oxygen defiance by load Results from superficial diffuse nutrient load and/or from turbidity currents from the
 catchment, which (a) stabilize the hypolimnion and (b) consume the hypolimnetic
 oxygen (triptogenic sensu Frey (1955) and biogenic sensu Hutchinson (1937), since a
 part of biogenic meromixis initiates from a sudden inflow of turbidity currents). This
 group can be subdivided into (a) anthropogenic and (b) natural situations.

3 dense groundwater Results from subsurface inflow of groundwater (crenogenic sensu Hutchinson (1937).

4 morphogenesis Results from inadequate mixing due to morphology (morphogenic sensu Northcote
 and Halsey (1969)) leading to anoxic bottom and to accumulation of electrolytes
 liberated from the sediments (biogenic sensu Hutchinson (1937)).

Fig. 2. Locations of identified Finnish meromictic lakes.
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ing waters highly concentrated in inorganic and 
organic humic substances increase the stabiliz-
ing forces. In these lakes, the anoxic volume is 
great and the chemocline is situated at shallow 
depths. In summary, increased water colour, 
shallow thermocline and small surface area pre-
dict the development of meromixis, especially in 
these types of lakes (Hongve 2002). Meromictic 
phenomena in humic forest lakes are a common 
feature rather than an exception. Most lakes 
have incomplete spring circulation. So far, three 
meromictic lakes have been reported. This is, 
however, misleading. According to Salonen et 
al. (1984), these types of humic forest lakes with 
irregular mixing patterns are abundant in Boreal 
areas. A summary of the meromixis history of 
these lakes is given in Table 3.

Valkiajärvi

Valkiajärvi is a small (0.078 km2), relatively deep 
lake surrounded by sheltering hills with a pine- 
and spruce-dominated forest rising 40–50 m 
above the lake surface. There are Sphagnum bogs 
in the northwestern and southeastern parts of the 
lake, from where three man-made ditches allow 
inflow of inorganic and humic waters. The lake 
has no other influents and only a small effluent. 
The monimolimnion is anoxic due to the humic 
load from the bog waters.

Meromixis in Valkiajärvi was first identified by 
Kaila (1964) and studied in detail by Meriläinen 
(1967, 1969, 1970, 1971a, 1971b). Valkiajärvi 
is the best-known and most thoroughly studied 
meromictic lake in Finland (Koivisto and Saarn-

Table 2. Morphometrical and chemical epilimnic properties of Vargsundet, Långsjön, Västra Kyrksundet and Östra 
Kyrksundet, according to Lindholm (1975a, 1975c, 1982a), Karlsson et al. in Räsänen (1983) and Lindholm and 
Eriksson (1990), and some morphometrical and hydrological values for Västerholmarna according to Bagge and 
Tulkki (1967). A short summary of the meromixis history of each lake is also presented. 

 Vargsundet Långsjön Västra Kyrksundet Östra Kyrksundet Västerholmarna

Location Åland Islands Åland Islands Åland Islands Åland Islands Nauvo
Length (km) 5.0 4.5 2.5 4.0 –
Breadth (m) 300 400 300 500 –
Area (ha) 110 143 60 200 –
Maximum depth (m) 35 18 18 22 8.0
Catchment (km2) 24 16.3 40 39 –
Depth of halocline (m) 8–18 5–10 4–9 12–15 –
Volume (m3) – 9000 ¥ 103 – – –
pH 7.2–9.3 7.5–9.0 7.5–9.1 8.0–9.5 –
Salinity (‰) 1.3–3.0 0.6 0.3–3.3 0.3–0.6 6.7
Alkalinity (mevk) 1.5–1.6 1.6–1.7 0.7–1.2 0.8–1.0 –
COD (mg l–1) 35–50 28–53 25–40 28–35 –
PO4-P (mg l–1) – < 0.1 < 0.1 – –
NH4-N (mg l–1) – 0.1–0.5 0.3–0.5 – –
Colour (mg Pt l–1) – < 55 0–20 – –
Secchi (m) – 1–2 1–4.5 – 3–5
Conductivity (mS m–1) – – – – 4.96
Meromixis history Meromictic Meromictic Meromictic after Meromictic Meromictic after
 during isolation after sea sea connection after reconnection isolation. (Bagge
 process. Holomictic connection improvement to V. Kyrksundet and Tulkki
 after isolation. improvement 1935. 1932. Holomictic 1932. Slow 1967).
 Meromictic after Holomictic after after aeration and process to
 sea reconnection dam isolation dam isolation holomixis after
 1930s. (Räsänen 1972. (Wikgren 1979. (Sundblom sea connection
 1983). 1965, Räsänen 1964. Wikgren improvement of
  1983, Lindholm 1965, Lindholm V. Kyrksundet.
  1975a). 1975a; 1982b, (Lindholm 1975a).
   Bonsdorff and
   Storberg 1990).
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isto 1978, Alapieti and Saarnisto 1981, Saarnisto 
1985, Eloranta 1987, Simola 1990, Ojala and Saar-
nisto 1999, Ojala 2001). Meriläinen (1969) called 
the lake “iron-meromictic” since he interpreted 
iron as the main factor counteracting the mixing 
in the lake. It has been found that the meromictic 
stability is a result of gases, e.g. carbon dioxide, 
methane, hydrogen sulphide, forming from decay-
ing organic material (e.g. Kjensmo1968, Hongve 
1980, 2002). These dissolved gases cause accumu-
lation of metals, e.g. iron and manganese, which 
in turn increase the density and therefore the sta-
bility. Other factors favouring meromixis are the 
small area/depth ratio, sheltering topography and 
continental climate.

Unfortunately, no data on the age of the 
meromixis is available. Through its history as an 
isolated lake, Valkiajärvi has formed laminates 
annually, i.e. varves (Alapieti and Saarnisto 
1981). This can be interpreted as a sign of life-
time meromixis even if varve formation is not 
restricted to meromictic lakes. On the contrary, 
varves occur frequently also in holomictic lakes 
(Ojala and Saarnisto 1999).

Human impacted kettlehole lakes

The lakes in this group are scattered around 
Finland, but have all been negatively affected 

Table 3. Morphometrical values and average chemical water properties of Nimetön, Horkkajärvi and Mekkojärvi, 
according to Arvola (1983), Arvola et al. (1990b) and Münster et al. (1992), and the morphometry and selected 
water properties of epilimnion in Valkiajärvi according to Meriläinen (1969) and Eloranta (1987). A short summary of 
the meromixis history of each lake, excluding Valkiajärvi, is also presented.

 Nimetön Horkkajärvi Mekkojärvi Valkiajärvi

Location 61°13´N, 61°13´N, 61°13´N, 61°54´N,
 25°10´E 25°10´E 25°10´E 23°53´E
Surface altitude (m a.s.l.) – – – 110
Length (km) – – – 575
Breadth (m) – – – 220
Area (ha) 0.4 1.1 0.35 7.8
Maximum depth (m) 11 13 3.5 25
Mean depth (m) 8 7 2.2 8.4
Catchment (ha) 34 70 – –
Depth of chemocline (m) – – 0.5–0.9 17
Volume (m3) 33.6 ¥ 103 78.6 ¥ 103 – 662 ¥ 103

Volume of monimolimnion (m3) – – – 43 ¥ 103

Volume of mixolimnion (m3) – – – 619 ¥ 103

pH 5.69 5.49 5.50 6.40
Alkalinity (mmol l–1) 0.07 0.04 0.11 0.02
Conductivity (mS m–1) 4.4 4.3 4.8 0.0245
Colour (mg Pt l–1) 231 248 372 25
Ptot (µg l–1) 36 18 33 5
Ntot (µg l–1) 836 798 815 330
Ca (mg l–1) 3.58 3.36 5.31 0.1
Mg (mg l–1) 0.88 0.79 0.98 –
Al (mg l–1) 0.22 0.24 0.23 –
Fe (mg l–1) 0.35 0.48 0.55 0.053
Na (mg l–1) 2.01 1.91 2.14 1.6
K (mg l–1) 1.12 0.89 0.94 0.4
Meromixis history Meromictic until loss Meromictic Incomplete In text.
 of sheltering position  holomictic or 
 by clear-cut 1981–  meromictic. 
 1982. Afterwards  (Kankaala 1988, 
 incomplete holomixis.  Arvola and Kankaala 
 (Salonen et al. 1984,  1989, Salonen and 
 Similä 1988).  Lehtovaara 1992). 
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because of their location in areas of prehistoric 
or historic settlement. The change from holomixis 
to meromixis in these lakes was associated with 
the initiation of agriculture, and the transition 
occurred through eutrophication of anthropogenic 
origin. The lakes have been influenced in their 
catchment areas by forest clearance, slash-and-
burn cultivation, modern cultivation and grazing, 
and, most importantly, retting and soaking of 
hemp and flax in their actual waters (Tolonen et 
al. 1976, Tolonen 1978). The deep, small basins 
of these lakes are situated in kettleholes, and have 
sheltering surroundings. Such physical factors 
combined with the increased input of minerogenic 
electrolytes and organic load in the existing con-
tinental climate have led to meromixis. Typical 
features of these lakes are high alkalinity and pH 
values, and increased concentrations of basic ele-
ments, heavy metals and nutrients. By increased 
environmental awareness, anthropogenic influ-
ence can be minimized, leading to environmental 
changes and evolutionary return to the holomictic 
period. Table 4 shows morphometrical and chemi-
cal properties of the lakes.

Lovojärvi

Lovojärvi was studied by Kukkonen and Tynni 
(1972), Ilmavirta et al. (1974), Hirviluoto (1975), 
Huttunen and Tolonen (1975), Keskitalo (1976, 
1977), Saarnisto et al. (1977), Simola (1977, 
1979, 1981, 1983, 1984), Huttunen (1980), 
Simola and Tolonen (1981), Jaakkola et al. 
(1983) and Simola et al. (1990). The lake basin 
forms an elongated narrow kettlehole in an esker, 
and it is small and rather shallow except for the 
main basin, which is relatively deep. The gla-
ciofluvial esker rises about 50 m above lake level, 
giving shelter to the lake. In the catchment area 
there is sorted sand and gravel, along with bogs 
and cultivated fields. The lake has four inlets, 
one of which is predominant, and an outlet. The 
ditches pass through bogs and cultivated areas, 
their water carrying a load of humic substances 
and electrolytes. After its isolation, the lake was 
clear and oligotrophic, but, due to the bogs, the 
trophic status was raised and the water became 
more humic and darker-coloured (Kukkonen and 
Tynni 1972). However, the true eutrophication 

Table 4. Morphometrical and chemical epilimnic properties of Lovojärvi (according to Ilmavirta et al. 1974, Huttunen 
and Tolonen 1975, Keskitalo 1977, Simola 1979), Hännisenlampi (according to Vuorinen 1978) and Laukunlampi 
(according to Jaakkola et al.1983, and Simola et al. 1984).

 Lovojärvi Hännisenlampi Laukunlampi

Location 61°05´N, 25°02´E 62°05´N, 30°12´E 62°40´N, 29°10´E
Surface altitude (m a.s.l.) 108.2 – 84
Length (km) 600 – –
Breadth (m) 130 – –
Area (ha) 4.8–5.4 1.5 8.8
Maximum depth (m) 17.5 16 27
Mean depth (m) 7.7 5.2 6.3
Catchment (ha) 570 3.5 ca. 20
Depth of chemocline (m) ca. 12–13 ca. 10–11 15–18
Volume (m3) 369 ¥ 103 78.3 ¥ 103 558 ¥ 103

Volume of monimolimnion (m3) – 4.7 ¥ 103 –
Volume of mixolimnion (m3) – 73.6 ¥ 103 –
pH 7.4–10.1 7.4–7.9 7.1–7.6
Alkalinity (mmol l–1) – – 0.5–0.6
Conductivity (mS m–1) 0.077–0.103 0.068 9–11
Colour (mg Pt l–1) 60–80 – 5
Secchi (m) 0.9 1.5–2.5 4–7
Ptot (µg l–1) 40–90 – 8–14
Ntot (µg l–1) 500–790 – 200–270
Ca (mg l–1) 4.0–8.6 – –
Mg (mg l–1) 1.75–3.4 – –
Na (mg l–1) 4.2–4.65 – –
K (mg l–1) 0.9–3.3 – –
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did not begin until the anthropogenic influence 
commenced. The meromixis started after 400 
BC according to Huttunen and Tolonen (1975), 
or around 700 AD according to Kukkonen and 
Tynni (1972). Kukkonen and Tynni (1972) sug-
gested that Lovojärvi has re-entered its holomic-
tic status due to shallowing, but Ilmavirta et al. 
(1974) considered the lake still meromictic. Hut-
tunen and Tolonen (1975) stated that Lovojärvi 
is in a transition from meromictic to holomictic, 
supported by Keskitalo (1976, 1977), Saarnisto 
et al. (1977), Huttunen (1980) and to some 
extent by Simola (1977, 1979) and Simola et al. 
(1990). However, H. Simola (pers. comm.) and 
L. Arvola (pers. comm.) believe that Lovojärvi is 
still meromictic.

Hännisenlampi

Hännisenlampi was studied by Vuorinen (1977, 
1978), Pirttiala (1980) and Huttunen and Meri-
läinen (1986). The lake basin is a small, round-
shaped kettlehole with relatively great depth. 
It is located in an esker, which forms a shel-
tered location for the lake. Hännisenlampi is a 
groundwater lake without inlets or outlets, so 
the retention time is long. The history of Hän-
nisenlampi resembles that of Lovojärvi. There 
was a Neolithic settlement nearby and the start 
of rye and hemp cultivation is dated back to 
the 15th century. Eventually, the slash-and-burn 
cultivation and hemp soaking led to meromixis 
in 1504 AD (Vuorinen 1978). Artificial lower-
ing of an adjacent lake resulted in a water level 
drop in Hännisenlampi as well, which increased 
electrolyte inflow and strengthened the mero-
mixis (Huttunen and Meriläinen 1986). Vuorinen 
(1978) considers Hännisenlampi to be meromic-
tic or in transition to holomictic, and Huttunen 
and Meriläinen (1986) state that the circulation 
is still insufficient to oxygenate the sediment.

Laukunlampi

Laukunlampi was studied by e.g. Huttunen and 
Meriläinen (1978), Appleby et al. (1979), Har-
tikainen (1979), Battarbee et al. (1980), Tolonen 
(1980), Battarbee (1981), Jaakkola et al. (1983), 

Rummery (1983), Simola et al. (1984), Tolonen 
et al. (1992) and Pitkänen (2000). Laukunlampi 
occupies a small, round-shaped kettlehole with 
steep slopes and relatively great depth. The esker 
surrounding the lake rises about 30 m above the 
water surface, giving shelter from winds. Water 
exchange takes place through groundwater, 
and therefore the retention time is long. The 
catchment area includes a coniferous forest and 
cultivated fields. Similar to Hännisenlampi, it 
suffered from the early anthropogenic influence 
of slash-and-burn cultivation and retting of flax, 
which led to the initiation of meromixis (Battar-
bee 1981, Simola et al. 1984). The density gradi-
ent has increased over time; the water level has 
dropped due to engineered water level lowering 
in adjacent lakes. The exposure of former water-
saturated sand deposits resulted in intensified 
erosion and increased electrolyte inflow, as in 
Hännisenlampi (Hartikainen 1979).

In addition to these Group 2 lakes, the fol-
lowing lakes are presumed to belong to Group 
2: Polvijärvi, Kalliojärvi and Suuri-Rostuvi in 
the Juuka area (Liehu et al. 1986, Rönkkö and 
Simola 1986; H. Simola pers. comm.), Laikka-
lammi in the Jokioinen area (Salonen et al. 2001) 
and Törönlampi in the Parikkala area (K. Tolo-
nen pers. comm.).

Lake in Group 4: Vähä-Pitkusta

Vähä-Pitkusta is the smaller of the Pitkusta twin 
lakes, which are separated by a narrow esker. 
Vähä-Pitkusta is small, very deep (35 m), has 
steep shores, and its basin is a round-shaped ket-
tlehole. Glaciofluvial eskers with a thick conifer-
ous forest rise 30 m above the lake, giving shelter 
from the winds. Vähä-Pitkusta is a groundwater 
lake without inlets or natural outlets. The reten-
tion time is long. The water table slopes to the 
north, feeding Vähä-Pitkusta through its southern 
shores, but the outflow has decelerated due to the 
low permeability of the northern shores of Vähä-
Pitkusta. The monimolimnion of Vähä-Pitkusta 
is poor in electrolytes and the difference between 
the monimolimnion and the mixolimnion is mar-
ginal (Table 4). The whole Holocene in the area 
(about 11 500 years) is represented in the lake 
sediment layer (about 160 cm) of Vähä-Pitkusta, 
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indicating a steady sedimentation rate of about 
0.14 mm yr–1. Signs of anthropogenic activity are 
sparse in the sediment, but a very slight increase 
in the trophic level due to climatic change is seen 
for the last 1500 years (A. Hakala et al. unpubl. 
data). The long history of Vähä-Pitkusta has been 
influenced by oxygen rich groundwater inflow 
through the whole basin, maintaining circula-
tion also in the bottom area. Gradual sedimenta-
tion which has blocked groundwater flow and 
diminished circulation in the bottom area, the 
slight increase in lake water density and the cold 
climate could all have attributed to the ending 
of overturns. As the bottom turned anaerobic, 
the organic sediment started to decay, producing 
dissolving gases and electrolytes. This occurred 
about 600 years ago (Alhonen et al. 2000; A. 
Hakala et al. unpubl. data). The main governing 
factor initiating and stabilizing the meromixis 
is the weakness of wind-induced mixing due to 
the morphology rather than to the strength of 

the chemical stratification. In this type of lake, 
increase in conductivity from surface to bottom 
is very slight and the absolute values often low. 
Suujärvi in Tammela is probably of the same 
type of meromixis (A.E. Ojala and L. Korka-
lainen unpubl. data). Table 5 shows morphologi-
cal and chemical properties of Vähä-Pitkusta.

Discussion

This study demonstrates that changing circulation 
patterns as a part of lake evolution are common 
in the northern temperate zone. Changes in evo-
lution are of natural or anthropogenic origin; 
natural as shaped physically and climatologically 
by the Ice Age, and anthropogenic as shaped by 
man. However, true meromictic lakes seem to be 
rare in Finland.

Lakes with irregular circulation are much 
more numerous than the true meromictic ones, 
which form a small, more homogenous group. 
The terms partial meromictic, semi-meromictic, 
temporary meromictic and periodic meromictic 
in fact characterize lakes in the large, heterog-
enous group with irregular circulation. The term 
spring meromictic is especially confusing, since 
recent studies have shown that lake-mixing con-
ditions are greatly dependent on autumnal circu-
lation, whereas incomplete vernal circulation is 
common and of minor importance (e.g. Hongve 
2002). The term meromixis should be used as 
unambiguously as possible, as most lakes are 
holomictic.

Classifications by e.g. Hutchinson (1937) 
and Walker and Likens (1975) form the basis 
of grouping meromictic lakes and are widely 
used. However, as discussed earlier, they are 
ambiguous and it is difficult to apply them as 
such to Finnish meromictic lakes. The classifica-
tion of Finnish lakes has been revised (Table 1), 
based on the original primary factors causing the 
meromictic processes. This enables us to esti-
mate occurrence, frequency and distribution of 
yet unidentified meromictic lakes in Finland.

Thirteen Finnish meromictic lakes are 
included in this study, eight lakes belonging to 
Group 1 and five lakes to Group 2. There is only 
one lake in Group 4 and none in Group 3.

Lindholm (1975, 1991, 1995) has identified 

Table 5. Morphometrical values for Vähä-Pitkusta and 
chemical water properties at 1 and 33 m, according to 
the water quality database of the Finnish Environmental 
Institute and to A. Hakala et al. (unpubl. data).

 Vähä-Pitkusta 1 m 33 m

Location 60°29´18´´N,
 23°39´15´´E
Surface altitude 93.3  
 (m a.s.l.)
Length (km) ca. 500  
Breadth (m) ca. 300  
Area (ha) ca. 11  
Maximum depth (m) 35  
Mean depth (m) ca. 12  
Depth of chemocline 17–25  
 (m)
Volume (m3) 1300 ¥ 103  
pH  6.5 6.20
Alkalinity (mmol l–1)  0.13 0.33
Conductivity (mS m–1)  3.7 4.70
Colour (mg Pt l–1)  5 30.00
Ptot (µg l–1)  13 280.00
Ntot (µg l–1)  340 1200.00
Ca (mg l–1)  3.6 5.00
Mg (mg l–1)  1.35 1.40
Na (mg l–1)  1.35 1.20
K (mg l–1)  1.0 1.30
Mn (mg l–1)  0.1 0.75
Fe (mg l–1)  0.02 0.85
Cl (mg l–1)  2.2 2.00
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seven Group 1 lakes on the Åland Islands and 
has estimated that the number of this lake type 
is twice this amount. It must be remembered that 
distribution is only possible along the coastline. 
Similar lakes with similar occurrence are well 
known along Norwegian coasts (e.g. Strøm 1957, 
1962, Holtan 1965, Barland 1991). Finnish Group 
1 lakes are rather shallow and contain brackish 
water, but Norwegian lakes are formed in deep 
fjords and developed due to inflow of real marine 
water, which makes them much more stable. In 
order to find possible cases in lake Groups 2 and 
4 (traditionally biogenic), a search in the lake 
databases (lake register and water quality regis-
ter) of the Finnish Environment Institute (SYKE) 
was made. The hypothesis required deep and 
small basins, features that are commonly linked 
to biogenic meromixis sensu Hutchinson (1937). 
The following preconditions were set: surface 
area < 0.3 km2 (e.g. Hongve 2002) and relative 
depth > 8% (e.g. Salonen et al. 1984). Relative 
depth (zr) is given by Eq. 1:

  (1)

where zm is the maximum depth and A the area 
of the lake. The lake register database does 
not include lakes smaller than one hectare, so 
the majority of possible cases were already 
absent at this point. The number of lakes of size 
0.01–0.3 km2 is 48 823 in the database, but there 
is the maximum depth available only in 6964 
cases. Of the 7000 lakes, 115 qualified in having 
a relative depth greater than eight percent, and 
24 exceeded a relative depth of ten percent. To 
be able to study the 115 lakes, chemical water 
quality data were needed, but data were avail-
able for only 69. The majority of these lakes had 
been only analysed once, mainly in the 1970s or 
the 1980s. Only three lakes had been followed 
historically.

The search for meromictic lakes based on 
available databases is insufficient. If a specula-
tive estimation based on the available data is 
made, it should start with lakes that exceed a 
relative depth of ten percent, since this starting 
point increases the theoretical probability of 
meromixis in each lake case. In the lake register 
database, 24 lakes reached ten percent. Water 
quality data were available for a half (12), and 

a third (4) of these showed intriguing meromic-
tic signs. The other lakes could be meromictic, 
but no conclusions can be drawn based on the 
database. In the lake register database, 0.36% of 
lakes that have an area of 0.01–0.3 km2 exceed a 
relative depth of ten percent. This yields about 
180 lakes. Since a third of these, estimated using 
the available data, are possibly meromictic, 
we arrive at 60 lake cases. This number seems 
reasonable, and it suggests that there could be a 
few dozen meromictic lakes in Finland. Many 
such lakes are probably found among the small, 
humic forest lakes. Lakes greatly resembling 
Finnish lakes of Groups 2 and 4 have been 
studied in Norway for a long time, and they are 
rather numerous in the Cambro-Silurian part of 
the Oslo area (e.g. Strøm 1945, Kjensmo 1967, 
1968, 1988, Hongve 1980, 1999, 2002). These 
lakes have similar features to those in Finland, 
which suggests that about the same magnitude of 
lake count should be also found in Finland.

Lakes that possess a smaller relative depth 
are typically influenced by anthropogenic activi-
ties. Their shallowness is compensated by more 
stable stratifications. Such lakes are obviously 
located in the vicinity of settlements and are 
therefore more likely to be found in southern 
Finland. The more natural origin of Groups 2 
and 4 lakes require either rich inflow or shel-
tered morphology. The required morphology 
is attained in a glaciofluvial environment, in 
terrain of varying height and steep relief and in 
areas of light wind. These features are charac-
teristic of southern, central, eastern and northern 
Finland, excluding central Lapland (Alalammi 
1986, 1990). The acidic and moist southern 
Boreal forest zone supplying electrolytes covers 
southern, central and eastern Finland (Alalammi 
1988). The same area also presents the highest 
surface coverage of lakes and lake percentage 
(Karlsson 1986). Western Finland and the whole 
of Ostrobothnia are conspicuously poor in mero-
mictic lakes. The flat, windy (Alalammi 1987) 
and submesic coast area does not therefore fulfil 
the requirements for producing such lakes. The 
most likely regions containing most meromic-
tic lakes is the Salpausselkä end-moraine zone 
and the area confined to the Salpausselkä zone, 
Ostrobothnia, the Kainuu Region and the eastern 
border of Finland (Fig. 2).
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It has been found that meromictic lakes are 
an ideal environment for the formation and 
preservation of annually laminated sediments. 
Varves require an environment that lacks post-
depositional disturbances of the sediment sur-
face, such as bioturbation, water turbulence and 
gas bubbling (Renberg 1982, Saarnisto 1986). 
The anoxic monimolimnion can maintain only 
bacterial life, and therefore bioturbation is neg-
ligible. Water turbulence is also minimal because 
the lakes are stratified and overturn cannot reach 
the bottom. Therefore, meromixis and varves 
are often found in the same lakes. Studies on 
annually laminated or varved lake sediments 
are frequent in Finland (Ojala et al. 2000, Ojala 
2001 and references therein). The amount of 
data on varved lakes is much greater than on 
meromictic lakes, although fortunately many 
inland meromictic lakes have been identified as 
a by-product of varve studies. However, because 
all meromictic lakes are not varved and vice 
versa, varved lake studies alone are inadequate 
for obtaining data on meromixis.

Many reports of irregular circulation ten-
dencies and possible meromixis are provided 
vaguely or without confirmation. Valid meromic-
tic status of a lake requires more than occasional 
water analyses. Water analyses should be regular 
and cover a period of several years. Fortunately, 
paleolimnological studies can provide a simpler 
and faster method. A paleoredox reconstruction 
with chemo- and biostratigraphy of a full-length 
sediment column gives data on the entire life span 
of a lake. While a sediment study alone is insuffi-
cient, if it is complemented by water analysis the 
whole history and temporal circulation status of a 
lake can be revealed (e.g. Tracey et al. 1996).

Conclusions

1. Only true meromictic lakes should be called 
meromictic; holomictic lakes with irregular 
circulation tendencies should be given some 
other term, for example incomplete holomic-
tic.

2. This study led to a revised classification for 
meromictic lakes, based on the original pri-
mary factors that have initiated the meromic-
tic processes, and it includes four principal 

groups (Table 1): (1) meromixis that results 
from inflow/precipitation of saline water over 
freshwater or freshwater over saline water, 
(2) meromixis that results from superficial 
diffuse nutrient load and/or turbidity cur-
rents from the catchment, (3) meromixis that 
results from subsurface inflow of ground-
water, (4) meromixis that results from inad-
equate mixing due to the morphology.

3. Identified Finnish meromictic lakes are 
mainly from Group 1 and 2: five coastal lakes 
from Group 1 and seven inland lakes from 
Group 2. Three lakes from Group 2 are mainly 
of anthropogenic origin and four of natural 
evolutionary origin. At present, only one lake 
represents Group 4 and none Group 3.

4. The theoretical search on hitherto unknown 
meromictic lakes in Finland produced an 
estimation of a few dozen lake cases. The 
probability of finding them is not high, since, 
based on this estimation, only one lake in 
800 is meromictic. Their probable occur-
rence, excluding the coastal lake cases, lies 
in the Salpausselkä end-moraine zone and in 
areas between the Salpausselkä zone, Ostro-
bothnia, the Kainuu Region and the eastern 
border of Finland (Fig. 2).

5. The importance of meromixis is due to its 
characteristic ecosystem and sedimentation 
structure, which as a depositional archive is 
valuable for research.

6. Meromictic lakes are very sensitive to envi-
ronmental changes and require protection.
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