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In this paper empirical algorithms for determining the Secchi disk depth (SDD) are 
developed and employed using optical (e.g., Landsat TM) and microwave (e.g., 
ERS-2 SAR) remote sensing data from the Gulf of Finland and the Archipelago Sea. 
The SDD is an important optical measure of water quality in the study area, where the 
coastal water considerably attenuates light because of the presence of phytoplankton, 
suspended matter and yellow substance. The results show that the accuracy of SDD 
estimation using a neural network-based method is much higher than that of a semi-
empirical or multivariate approach. On the other hand, the additional use of SAR data 
only slightly improved SDD estimation when compared with the use of TM data only. 
Although the improvement is marginal, the results suggest that there may be some 
SAR backscattering signatures correlated to SDD measurements in the area. However, 
such a small improvement is not very helpful for the practical estimation of SDD. In 
the future, the technique of using combined optical and microwave data still needs to 
be refi ned using, e.g., MERIS and ASAR data.

Introduction

Up to the present, the digital evaluation of satel-
lite sensors  ̓information at visible and near infra-
red (NIR) wavelengths has been used to estimate 
water quality variables (see e.g. Klemas et al. 
1974, Alföldi and Munday 1978, Moore 1980, 

Shih and Gervin 1980, Carpenter and Carpenter 
1983, Verdin 1985, Ferrari et al. 1996). These 
investigations suggest that Landsat TM can pro-
vide relatively low-cost, simultaneous informa-
tion on surface water conditions from numerous 
lakes and coastal areas situated within a large 
geographic area (Lathrop and Lillesand 1986, 
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Tassan 1987, Doerffer et al. 1989, Harrington 
and Schiebe 1992, Lindell et al. 1999). 

The Gulf of Finland and the Finnish Archi-
pelago Sea are optically dominated by scatter-
ing from suspended matter, whereas the coastal 
waters are dominated by absorption from phy-
toplankton, suspended sediment and yellow 
substance. This is because the Gulf of Finland 
and the Archipelago Sea are highly affected by 
the input from rivers, which discharge a high 
concentration of suspended mineral solids and 
nutrients. The optical properties of the water in 
the area have been studied using remotely sensed 
data from both space satellites and aircraft (Elo-
heimo et al. 1998, Hallikainen 1999, Harma et 
al. 2001, Koponen et al. 2001, Pulliainen et al. 
2001, Koponen et al. 2002, Herlevi 2002).

The Secchi disk depth (SDD) is an impor-
tant optical characteristic of water related to 
water quality. It differs, for example, from the 
suspended sediment concentration which is a 
measure of the weight of organic and inorganic 
particulates suspended in the water column (Har-
rington and Schiebe 1992, Schiebe et al. 1992). 
SDD has already become a widely used tool 
for measuring water transparency with remote 
sensing methods (Lathrop and Lillesand 1991, 
Mausel et al. 1991, Dekker and Peters 1993, 
Lavery et al. 1993, Mulhearn 1995). Although 
there have been many efforts to map this vari-
able from satellite imagery, e.g., from Landsat 
TM data, the results from deriving water qual-

ity variables from individual scenes are not very 
consistent (Lindell et al. 1999). Fortunately, 
some advanced optical sensors such as SeaWiFS, 
MODIS and MERIS are able to provide a better 
understanding of water quality characteristics, 
since they can measure the radiance leaving the 
surface water in six or more bands at visible and 
near infrared (NIR) wavelengths (Ruddick et al. 
2000).

Microwave remote sensing, on the other 
hand, is signifi cantly related to the surface rough-
ness of water. That is, the SAR sensor measures 
water surface properties rather than those of the 
water mass below the surface. Since all the fea-
tures in SAR imagery of water areas are neces-
sarily surface phenomena, all structures in SAR 
images are related to the surface roughness. On 
the other hand, surface roughness affects opti-
cal interpretations of water quality observations 
(Lindell et al. 1999, Zhang et al. 2002a); it may 
therefore be useful to employ SAR data to assist 
in the retrieval of water quality variables.

In this study, we fi rst employ a semi-empiri-
cal SDD algorithm using the green band of 
Landsat TM (denoted by TM2). Secondly, tests 
are made of multivariate regression and neural 
network algorithms for determining SDD, apply-
ing various different TM bands and SAR data 
for the Gulf of Finland and the Archipelago Sea. 
The time period is August 1997. In this study, the 
results of using various empirical algorithms are 
also compared with each other.

Study area and in situ data

The Gulf of Finland is strongly eutrophic 
because of the anthropogenic nutrient load (e.g., 
Tamminen 1990, Astok et al. 1991, Pitkänen 
et al. 1993, Kuusisto et al. 1998). The Gulf is 
relatively shallow, with a mean depth of 38 m 
and a maximum depth of 123 m. The total water 
volume is about 1130 km3. The surface area 
(29 600 km2) is small as compared with the 
catchment area (421 000 km2). The incoming 
river discharge is about 110 km3/year. In the east-
ernmost part of the Gulf the salinity is very low 
because of the fresh water outfl ow of the Neva 
river. The average salinity on the surface is close 
to 0.6% in December and 0.3%–0.6% in June. 

Fig. 1. A map of the study area.
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The Gulf is also saline-stratifi ed, and in summer 
temperature-stratifi ed. In general, the concentra-
tion of phytoplankton is nitrogen-limited, but in 
the inner Neva estuary it is phosphorus-limited. 
The factors affecting light attenuation (organic, 
inorganic matter and yellow substance) vary 
temporally as well as spatially (Kuusisto et al. 
1998). The Archipelago Sea is adjacent to the 
western part of the Gulf. The study area covers 
the coastal waters of both regions. Figure 1 
shows a map of the study area.

In this case study, concurrent in situ measure-
ments of water transparency (i.e., SDD) were 
collected, and one scene each of both Landsat 
TM and ERS-2 SAR covering the Gulf of Fin-
land and the Archipelago Sea were obtained. 
The acquisition times of the TM image and the 
SAR image were 8.44 UTC and 9.40 UTC on 16 
August 1997, respectively. In situ measurements 
(including chlorophyll a, suspended sediment 
and yellow substance) using ship-borne equip-
ment were conducted by the Finnish Environ-
ment Institute from 10:00 to 17:50 on 14 August 
1997. 

Landsat TM and ERS-2 SAR data

A comparison of nearly simultaneous spaceborne 
optical and microwave observations was possible 
for the satellite image pair employed in the study. 
On 16 August 1997, the Landsat TM sensor and 
the ERS-2 SAR imaged the same coastal region 
at 8.44 UTC and 9.40 UTC, respectively. Since 
the time difference between the imaging was less 
than an hour, the water surface wave conditions, 
including wind and water temperature, can be 
assumed to be quite similar for both images (sys-
tematic spatial differences in wave conditions). 
In the previous 24 hours, the average wind speed 
was about 5.5 m s–1, with a minimum of 3 m s–1 
and a maximum of 9 m s–1. The wind direction 
varied from 315 to 360 degrees. The average 
temperature was 19.5 °C degrees and the aver-
age wave height was about 0.39 m, with a mini-
mum of 0.2 m and a maximum of 0.8 m. Since 
in situ measurements were made on 14 August 
1997 and the satellite data were only available 
on 16 August 1997, we assumed that the water 
quality conditions were representative for the 16 

August 1997, even though the time difference 
was 2 days (Zhang et al. 2002b).

Landsat TM data processing

When satellite data, transformed into radiances 
as seen by the sensors, are used to retrieve quan-
titative data concerning the Earthʼs surface, a 
procedure to correct the measured radiance for 
the atmosperic contribution is typically required 
(Ouaidrari and Vermote 1999, Zhang et al. 
1999). The remaining amount of radiance that 
reaches the sensor (target radiance) can range 
from 25% at 450 nm (the blue region of the elec-
tromagnetic spectrum) to 0% at 850 nm (the red 
region) (Gordon and Morel 1983, Vermote et al. 
1997, Hu et al. 2001, Wang and Gordon 2002).

One technique over water areas is to observe 
a refl ectance target, such as deep clear water, as 
a “dark object” (Chavez 1988), later improved 
by the same author (Chavez 1996), that should 
almost completely absorb all light in the NIR 
region, and thus should have brightness values 
close to zero (Gilabert et al. 1994). Since analy-
sis was made for a single image with quite a 
small angular range, the atmospheric correc-
tion has little effect on the correlation analysis. 
Therefore, the atmospheric correction was 
ignored in this case study.

ESR-2 SAR combined with Landsat TM

Radar remote sensing is quite different from 
optical remote sensing in many ways. A space-
borne radar is an active instrument that transmits 
a coherent signal into the target and measures 
the backscattered signal. Since the wavelengths 
employed by microwave radars are on the cm 
scale instead of the nm scale, the interaction 
of the electromagnetic radiation with a water 
body is also different from the optical/IR case. 
A microwave radar signal does not signifi cantly 
penetrate into the water. Instead it refl ects from 
the water surface. Hence, the radar backscatter-
ing signatures can only carry information on (a) 
water surface geometry (waves and ripples), (b) 
material on the water surface and (c) the permit-
tivity (dielectric constant) of the top layer of the 
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water. Nevertheless, water surface geometry can 
be related to such properties as water depth, 
internal waves/currents and slicks on the surface 
(Lindell et al. 1999).

One basic assumption in the investigations 
conducted has been that, since SAR observa-
tions are only affected by the surface and since 
the interpretation of optical data is disturbed 
by surface refl ection, it may be possible, using 
concurrent SAR data, to correct factors disturb-
ing optical signatures. In practice, the feasibility 
of this assumption was tested in this study by 
examining the correlation between the observed 
TM-intensities and the ERS-2 SAR derived 
backscattering coeffi cients.

In order to eliminate the effect of incidence/
refl ection angle variation within the TM and 
SAR images, the spatial range in the investiga-
tions was limited to 60 km (across-track range 
for both images). Moreover, an angular correc-
tion was made for SAR signatures (normaliza-
tion to an incidence angle of 19.5°). This was 
done due to the strong dependence of water 
surface backscattering on the angle of incidence, 
which is evident for ERS-2 SAR data even for 
as small a spatial range as 60 km. The correc-
tion was performed by applying an exponential 
model presented by Ulaby et al. (1982).

Empirical algorithms

Typically, many retrieval algorithms in the lit-
erature are based on some logarithmic relation 
of the reciprocal of SDD (Lindell et al. 1999). 
In this study, we employed and compared the 
results from different kinds of algorithms: (a) a 
semi-empirical algorithm for SDD using channel 
2 (TM2) of Landsat TM, (b) multivariate regres-
sion and (c) neural network methods for SDD 
using optical (TM) data and microwave (SAR) 
data in the study area.

A semi-empirical algorithm

The Secchi disk depth (m), SDD, for monochro-
matic light is written (Hojerslev 1986) as

                             SDD = 6.3/c                       (1)

where c is the attenuation coeffi cient (m–1). 
However, for turbid waters, the contribution to 
the light attenuation mainly comes from scat-
tering, and thus c is independent of wavelength 
(Phillips and Kirk 1984). This means that Eq. 1 
can be considered as a good approximation for 
the naked eye, without fi lters (Mulhearn 1995).

Absorption, backscattering and attenuation 
coeffi cients (a, b

B
 and c, respectively) can be fur-

ther expressed as follows (e.g., Bukata et al. 1995)

                     a = a
w
 + a

ch
 + a

sm
 + a

ys
,             (2a)

                  b
B
 = 0.5b

w
 + b

B_ch
 + b

B_sm
,           (2b)

                     c = c
w
 + c

ch
 + c

sm
 + c

ys
,             (2c)

where the subscripts w, ch, sm, ys and B refer 
to the contributions from pure sea water, phy-
toplankton, suspended sediment, yellow sub-
stance and backscattering, respectively. Also, 
0.5b

w
 = b

B_w,
 where b

w
 is the scattering coeffi -

cient for pure sea water (Jerlov 1976).
The coastal waters of the Gulf of Finland and 

the Archipelago Sea are predominantly green to 
blue-green, except in the plumes of rivers after 
heavy rain. This means that a submerged Secchi 
disk can be viewed in a wavelength band similar 
to that of Landsat TM band 2, i.e., 520–600 nm. 
Thus, for this band it is reasonable to assume that 
the effects of yellow substance are negligible 
(Jerlov 1976). In this band there is a minimum in 
absorption by phytoplankton (Shifrin 1988). Let 
us therefore assume that both phytoplankton and 
suspended sediment are purely scattering centres. 
That is, their absorption can be also ignored in 
this band, i.e., both a

ch
 and a

sm
 are considerably 

smaller than a
w
. Then we can obtain as follows

                                  a = a
w
,                          (3a)

                   b
B
 = 0.5b

w
 + b

B_ch
 + b

B_sm
,           (3b)

                         c = c
w
 + c

ch
 + c

sm
.                  (3c)

The remote sensing refl ectivity, R, is given 
(Gordon and Morel 1983) by

                             R = 0.33b
B
/a,                       (4)

where R is the ratio of upwelling to downwelling 
irradiance just below the sea surface, b

B
 is the 

backscatter coeffi cient, and a is the absorption 
coeffi cient.
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Now, Eq. 4 can be written as

             R = 0.33(0.5b
w
 + b

B_ch
 + b

B_sm
)/a

w
      (5)

where R is the refl ectivity in the green band 
(TM2).

According to Mulhearn (1995) and Bukata et 
al. (1995), let us defi ne the relation between total 
scatter and backscatter by setting b

B_ch
 + b

B_sm
 = 

Bb
ch

 + Bb
sm

 = Bc
ch

 + Bc
sm

 = B(c
ch

 + c
sm

), where 
B is the ratio of backscatter to the total scattering 
coeffi cient for both phytoplankton and suspended 
sediment and is assumed to be the same for both of 
them. Therefore, Eq. 5 can also be expressed as

             R = 0.33(B(c
ch

 + c
sm

) + 0.5b
w
)/a

w
.       (6)

From Eqs. 1 and 3c (c = c
w
 + c

ch
 + c

sm
), we 

can obtain

                   c
ch

 + c
sm

 = 6.3/SDD – c
w
,              (7)

and then

         R = 0.33(B(6.3/SDD – c
w
)+0.5b

w
)/a

w
,    (8)

where B is the only adjustable constant in this 
equation. Values quoted in the literature for 
the ratio of backscatter to the total scattering 
coeffi cient for ocean waters, not just for both 
phytoplankton and suspended matter, i.e., for all 
particles, range between 0.006 and 0.11 (Manko-
vskiy 1984, Shifrin 1988). The theoretical value 
for pure water is 0.5. Values for coastal waters 
appear to range between 0.006 and 0.025 (Mul-
hearn 1995). The assumptions in Eq. 8 imply that 
both c

ch
 and c

sm
 are much greater than c

w
 and that 

6.3B/SDD is also much greater than 0.5b
w
. Given 

a value for B of approximately 0.01 and taking 
c

w
 = 0.066 m–1 and b

w
 = 0.002 m–1 (Hojerslev 

1986) for 520–600 nm, both of these assump-
tions will be satisfi ed if SDD << 100 m, which is 
always true in coastal waters.

Thus, Eq. 8 can be written as

                    R = 0.33(6.3B/SDD)/a
w

              (9)

and with a
w
 = 0.064 m–1 (Hojerslev 1986),

                           SDD = 32.5B/R                   (10)

as also obtained by Mulhearn (1995). The semi-
empirical algorithm given by Eqs. 9 and 10 
assumes that absorption both by yellow sub-
stance and by phytoplankton were negligible in 
the study material. This may cause inaccuracy in 
SDD retrieval. Further studies are still needed to 
refi ne this semi-empirical algorithm.

Multivariate algorithms

A radar measurement is affected by target prop-
erties different from those for optical/IR obser-
vations. At optical wavelengths, however, the 
passive remote sensing observations are affected 
by the volume scattering and fl uorescence of 
incoming solar radiation inside the water body. 
The temporal and spatial variations in water 
surface roughness are actually factors that dis-
turb the interpretation of optical data. Since the 
radar observations are only infl uenced by the 
surface layers, it may be possible to develop 
water quality retrievals in which SAR data are 
used to provide supplementary information for 
optical observations (Lindell et al. 1999, Zhang 
et al. 2002a).

In this case study, the SDD multivariate algo-
rithms derived from TM bands and from com-
bined TM/SAR data can be expressed as follows 

                            (11)

        (12)

where TM
i
 and SAR can be the digital number 

(DN) values of the 7 TM bands and SAR data 
while A

0
, A

i
, B

0
, B

i
, and B are the derived regres-

sion coeffi cient values, which can be obtained 
by comparing the satellite observations with the 
measurements from ground truth points.

An empirical neural network algorithm

An empirical neural network algorithm was 
also applied in this case study. A neural network 
has three layers: input layer, hidden layer, and 
output layer. The fi rst (input) layer distributes 
the input parameters, i.e., the data extracted at 
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different wavelengths (TM and SAR observa-
tions), to the second layer. The second (hidden) 
layer has a varying number of neurons, where 
each input parameter is multiplied by its connec-
tionʼs weights and all the inputs to the neurons 
are summed and passed through the non-linear 
sigmoid function. The third layer receives the 
output of the second layer and processes this 
through neurons again (Keiner and Yan 1998, 
Keiner 1999).

In a neural network, each neuron has two 
parts: a linear summation function and a non-
linear activation function. The inputs to each 
neuron are fi rstly routed through the summation 
function. The output of this function inside the 
neuron at node j is given by

                                            (13)

where x
i
 are the inputs, w

ij
 are the weights related 

to each input/node connection, and b
j
 is the bias 

related to node j, and y
j
 is the output of this func-

tion inside the neuron at node j.
The inputs to the neuron are multiplied by 

their related weights, summed and added to the 
bias. The weights determine which inputs and 
connections in the network are more important 

than others. The bias controls the activation level 
of a neuron, when the resulting sum is passed 
through a non-linear activation function

                                 
                                                                       (14)

where g is a sigmoid activation function and a 
is a factor depending on the valid range of SDD, 
i.e., the maximum plus one. The activation func-
tion is what gives the network its ability to model 
non-linear behaviour (Krasnopolsky et al. 1995, 
2000, Zhang et al. 2002c).

Validation against in situ data

The potential of satellite remote sensing is to yield 
synoptic information on water transparency over 
large areas. However, the limitation of this tech-
nology includes the fact that the accuracy of water 
quality information is related to the accuracy and 
representativeness of in situ water sampling (Elo-
heimo et al. 1998, Hallikainen 1999). In this case 
study, the validation of SDD retrieval against in 
situ data ranges from 0.67 to 4.2 meters.

Fig. 2. Regression of SDD 
estimated from TM2 with 
the measured SDD using 
the semi-empirical algo-
rithm.
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Results and discussion

With Eq. 10, SDD derived from TM2 is plot-
ted against the measured SDD in Fig. 2. For 
this algorithm, the coeffi cient of determina-
tion is R2 = 0.52, the root mean square error 
is RMSE = 0.68 m, and the adjustable con-
stant B = 0.0167. Clearly, this result is not 
good enough for practical SDD retrieval in 
the coastal waters of the study area. The main 
reason for this is probably that we assumed the 
absorption by yellow substance and by phyto-
plankton to be negligible in the semi-empirical 
algorithm.

Using the digital number values of the TM 
bands and SAR data, SDD can also be directly 
estimated with the multivariate algorithms (Eqs. 
11 and 12, respectively). Thus, SDD can be 
obtained from

             SDD
TM

 = 1.878 + 0.043(TM1) + 
                0.002(TM2) – 0.142(TM3) – 
                0.256(TM4) + 0.018(TM5) + 
                 0.008(TM6) + 0.005(TM7)          (15)

with the coeffi cient of determination R2 = 0.74 
and RMSE = 0.44 m.

           SDD
TM/SAR

 = 3.452 + 0.029(TM1) – 
    0.009(TM2) – 0.079(TM3) – 0.375(TM4) + 
                0.127(TM5) + 0.007(TM6) – 
                  0.010(TM7) – 0.003(SAR)          (16)

with the coeffi cient of determination R2 = 0.77 
and RMSE = 0.41 m (Fig. 3). 

Obviously, the multivariate regression approach 
was better at retrieving SDD than the semi-
empirical algorithm (R2 = 0.52). However, SAR 
data only improved SDD estimation slightly 
in this case study. However, this small SDD 
improvement (3%) may suggest that there are 
some backscattering signatures of the SAR data 
observation corresponding to surface properties 
in SDD measurements in the area.

On the other hand, the results indicated that 
the accuracy of SDD estimation applying the 
neural network (R2 = 0.95 and RMSE = 0.19 m 
for TM/SAR (Fig. 4) and R2 = 0.91 and RMSE 
= 0.25 m for TM only) is much greater than that 
of the semi-empirical algorithm (R2 = 0.52) or 
multivariate approach (R2 = 0.77 for TM/SAR 
and R2 = 0.74 for TM) (see Table 2). SAR 
data improved SDD estimation in the study by 
less than 5% (e.g., 4% for the neural network 
method). Further studies are needed using simul-

Fig. 3. Regression of SDD 
estimated from TM/SAR data 
with the measured SDD using 
the multivariate approach.
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taneous acquisition of optical and SAR data, 
e.g., MERIS and ASAR, in the area.

An examination of the correlations between 
the digital values of the different TM bands 
showed that the correlations (r2) for TM band 
1–7 pairs ranged between 0.00 and 0.93. This 
difference among the bands may imply that the 
blue band (TM1), green band (TM2), red band 
(TM3), and near infrared band (TM4), as well 
as TM5, TM6 and TM7 either changed greatly 
at any one site or changed differently at all sites. 
This may also have a signifi cant effect on the 
results of data analysis in this study (Zhang et al. 
2002b). Moreover, the high correlation between 
some TM bands means that these are measur-
ing similar optical properties of the water in the 
study area.

Examination also indicated that SDD had a 
correlation (r2) of 0.31 with chlorophyll a and a 
correlation (r2) of 0.49 with suspended sediment 

concentration. That is, SDD has some correla-
tions with amounts of both organic and inorganic 
matter in the study area (Zhang et al. 2002b).

Table 1 gives the correlation (r2) between 
SDD and the digital data of the TM bands and 
ERS-2 SAR. Simple regression analysis indi-
cated that SDD has its highest correlation with 
TM3 (r2 = 0.53), and higher correlations with 
TM2 and TM4 than with TM1, but a low cor-
relation with TM5 and very low correlations 
with TM6 and TM7. However, ERS-2 SAR 
has some correlation with the variation of SDD 
(r2 = 0.36). 

A previous study (Zhang et al. 2002a) 
showed that the highest correlation between TM 
and SAR data was that between TM2 and SAR 
data (r2 = 0.14). Since angular corrected SAR 
observations are only dependent on the surface 
wave conditions (in addition to random speckle, 
which was mostly averaged out in the employed 

Fig. 4. Regression of SDD 
estimated TM/SAR data 
with the measured SDD 
using the neural network 
algorithm.

Table 1. Correlation (r 2) between Secchi disk depth (SDD) and the digital data of TM bands and ERS-2 SAR.

 TM TM2 TM3 TM4 TM5 TM6 TM7 SAR
 (450– (520– (630– (760– (1550– (2080– (10400– (C–band)
 520 nm) 600 nm) 690 nm) 900 nm) 1750 nm) 2350 nm) 12500 nm)

SDD 0.20 0.38 0.53 0.46 0.16 0.06 0.07 0.36
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water area signatures), this suggests that the vari-
ations in wave conditions in different parts of the 
TM image caused 14% of the variability in the 
TM2 observations.

Table 2 gives a comparison of SDD esti-
mation results using the empirical algorithms 
for TM data and SAR data. The results show 
that SDD retrieval values obtained using the 
semi-empirical algorithm are lower than those 
expected for coastal waters in the area. Prob-
ably, this is because we assumed the absorp-
tion by yellow substance and by phytoplankton 
to be negligible in the study. Obviously, the 
semi-empirical algorithm needs to be refi ned 
in future studies. Even though the multivariate 
regression approach using TM data improved 
SDD (R2 = 0.74) estimation over that obtained 
using the semi-empirical algorithm (R2 = 0.52), 
the additional use of SAR data did not improve 
the SDD estimation much (R2 = 0.77). Similarly, 
the accuracy of the SDD estimation applying 
the neural network (R2 = 0.91) to TM data is 
much greater than that of those from the semi-
empirical algorithm and multivariate approach. 
However, SAR data did improve SDD retrieval 
slightly.

In the international literature, the mapping 
of SDD has shown similar results. The results 
for individual scenes are not very consistent and 
show variability in R2 from 0.59 to 0.98 (Lindell 
et al. 1999). For example, Dekker and Peters 
(1993) found the following relations

               SDD = 1199.93 – 55.90(TM3)       (17)

where TM3 is a digital number and R2 = 0.66.

            ln(SDD) = 37.36 – 11.15ln(TM3)     (18)

with R2 = 0.86.

Ghezzi et al. (1998) reported a relationship 
with R2 = 0.749 for SDD ranging from 8.0 to 
9.5 m using

               SDD = 10.41 – 46.54ln(R
TM2

).       (19)

Lathrop et al. (1991) used refl ectance values 
derived from TM1 and TM3 and obtained 
R2 = 0.87 with the following function

                                        (20)

Lavery et al. (1993) got R2 = 0.81 for the 
relation

              (21)

Conclusions

In this study empirical algorithms have been 
developed and applied for obtaining the Secchi 
disk depth using optical (e.g., Landsat TM) 
and microwave (e.g., ERS-2 SAR) remote 
sensing data from the Gulf of Finland and the 
Archipelago Sea. The digital TM and SAR data 
from water sample locations were extracted and 
examined. Signifi cant correlation was observed 
between the digital data and SDD. The results 
show that SDD can be estimated in the coastal 
waters of the study area using a semi-empiri-
cal algorithm, multivariate algorithms or neural 
network algorithms. The results also indicate 
that the accuracy of the SDD estimation found 
by applying a neural network (R2 = 0.95 for 
TM/SAR and 0.91 for TM) is much higher 
than that of either the semi-empirical algo-
rithm (R2 = 0.52) or the multivariate approach 
(R2 = 0.77 for TM/SAR and 0.74 for TM). SAR 
data improved SDD estimation by less than 5% 

Table 2. Comparison of Secchi disk depth (SDD) using empirical algorithms derived from TM and from TM/SAR 
data.

 Semi-empirical algorithm Multivariate regression Neural network
 (R 2 & RMSE) (R 2 & RMSE) (R 2 & RMSE)

TM 0.52 & 0.68 m 0.74 & 0.44 m 0.91 & 0.25 m
TM/SAR NA 0.77 & 0.41 m 0.95 & 0.19 m

Note: NA means not available for the semi-empirical algorithm.
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(e.g., 3% for the multivariate approach and 4% 
for the neural network method). Although SAR 
improved SDD retrieval slightly, the results may 
suggest that there are some SAR backscattering 
signatures corresponding to SDD measurements 
in the area. It may also be useful to develop 
SDD algorithms in which SAR data are used as 
supplementary data to optical observations of 
water transparency characteristics. Such small 
improvements do not appear to be very helpful 
for practical SDD retrieval in the area.
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