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Faunal communities in small boreal lakes face large-scale stresses including eutrophication 
and browning. Here, we studied the community composition of macroinvertebrates, fish, 
and water birds in relation to lake morphometry and water quality in 25 small (< 40 ha) 
lakes in eastern and southern Finland to predict community-level responses to environmen-
tal drivers. Results indicated that phosphorus concentration, pH, and lake surface area are 
the main faunal drivers of community composition. While dissolved organic carbon (DOC) 
concentration did not explain faunal community composition, relative taxa composition 
was statistically significantly different when lakes were dissimilar in colour. Invertebrate 
orders Trichoptera and Isopoda were characteristic of high DOC lakes whereas Acari 
(water mites) and whitefish, Coregonus lavaretus, were characteristics of low DOC lakes. 
The results are generally consistent with previous studies but extend knowledge of com-
munity-level variation in boreal lakes.

Introduction

Boreal lakes are under increasing pressure from 
global climate change and intensive local land 
use that commonly increase the concentrations 
of organic substances and iron, leading to water 
brownification and subsequently altered thermal 
dynamics and hypolimnetic anoxia (Roulet and 
Moore 2006, Monteith et al. 2007, Albrecht et al. 
2023). Small lakes are particularly affected, yet 
least monitored, compared to large lakes under 

the EU’s water framework-based monitoring 
(Brönmark and Hansson 2005, Bhateria and Jain 
2016). Changing aquatic environment can affect 
species composition and abundances not only 
within waterbodies but in the adjacent terrestrial 
environments as well (Knight et al. 2005, Schulz 
et al. 2015, Pilotto et al. 2019). This calls for 
understanding how species assemblages associated 
with small boreal lakes are shaped by environmen-
tal variables in general (Tonn et al. 1990, Lappa-
lainen and Soininen 2006, Heino et al. 2010). 
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estimate the total biological impact of certain 
drivers (Landres et al. 1988, Heino 2010), and 
weaken the ability to distinguish different lake 
types by their biota. Therefore, it is important 
to improve understanding of dynamics between 
different taxonomic groups and evaluate whether 
occurrence patterns emerge among the seem-
ingly non-associated organisms (e.g., Heino et 
al. 2017, Heino et al. 2021).

The aim of this study is to investigate faunal 
community composition in small boreal lakes 
with respect to environmental variables, and par-
ticularly to DOC and water colour gradients. We 
hypothesize that environmental variables related 
to lake morphology and primary production 
explain the multitaxon assemblage composition 
while DOC forms an additional key gradient that 
mediates land-use and climate change driven 
changes in the community composition in small 
boreal lakes.

Material and methods

Study Lakes

We sampled 25 small state-owned boreal lakes: 17 
lakes in Lieksa, eastern Finland (63.18ºN 30.67ºE), 
and 8 lakes in Evo, southern Finland (61.19ºN 
25.10ºE) (Fig. 1, Vainikka et al. 2024). The lakes 
were selected based on their surface area (< 40 ha), 
accessibility (forest roads close enough to use a 
boat) and former history in research (Nummi and 
Pöysä 1993, Arvola et al. 2010, Turunen et al. 
2023). The straight-line distance between the two 
furthest lakes was 26.4 km in Lieksa and 4.8 km 
in Evo region. Correspondingly, the straight-line 
distance between the closest two Lieksa and Evo 
region lakes was 347.5 km. Some of the lakes 
in Lieksa region were interconnected by small 
ditches or creeks that were not considered import-
ant for species abundances, yet they may facilitate 
dispersion (see also Vainikka et al. 2024). The 
lakes were surrounded by various types of forests 
ranging from intensively managed coniferous for-
ests on peatlands to deciduous forests on mineral 
soils. The study lakes are open to recreational fish-
eries, but the impact of fishing on these rural lakes 
was assumed to be negligible. Whitefish (Core-
gonus lavaretus) has been introduced to some of 

A holistic view of how environmental vari-
ables drive aquatic communities is needed to 
conserve and manage freshwater biodiversity 
(Dahlin et al. 2021, Hermoso et al. 2021, Hill et 
al. 2021). The recent browning of boreal lakes 
requires both impact assessment and mitiga-
tion measures. Leaching of terrestrial dissolved 
organic matter (DOM) to boreal lakes is magni-
fied by climate change that can increase precipi-
tation, temperature, and terrestrial production, as 
well as intensive land use such as agriculture and 
forestry practices that disturb natural vegetation 
and soil cover (Hongve et al. 2004, Nieminen 
et al. 2015, Hayden et al. 2017). Often, studies 
on browning focus on food web interactions, 
productivity, or performance of individual spe-
cies or taxonomic group under humic conditions 
(Estlander et al. 2012, Seekell et al. 2015, Arzel 
et al. 2020). Yet, comprehensive data on multi-
ple taxonomic groups are needed to understand 
how dissolved organic carbon (DOC) and water 
colour explain variation in species assemblages 
in boreal lakes and their adjacent terrestrial habi-
tats (Blanchet et al. 2022).

Species assemblages in small boreal lakes 
are most often studied by focusing on a single 
organismal group at a time (Tonn et al. 1990, 
Holmgren and Appelberg 2000, Paszkowski and 
Tonn 2006). Overall, the diversity of water birds, 
fishes and invertebrates reflects environmental 
characteristics and habitat diversity (Quinn and 
Hickey 1990, Welcomme et al. 2005, Pöysä et 
al. 2019) but also dispersal filters and historical 
factors (Tonn et al. 1990, Heino et al. 2017). 
For example, fish diversity is explained by lake 
surface area, depth, total phosphorus content, 
colour, and pH (Paszkowski and Tonn 2000, Eros 
et al. 2009, Sutela et al. 2010). Variables such as 
lake surface area, phosphorus content, alkalin-
ity and DOC also explain species diversity of 
aquatic invertebrates (Fried-Petersen et al. 2020, 
Kesti et al. 2022). However, multiple faunal 
groups have only rarely been analysed together 
(but see Paszkowski and Tonn 2000, Nummi 
et al. 2016) to explore if animal communi-
ties would show predictable variation along cer-
tain environmental gradients or human-induced 
changes among small boreal lakes (Heino et al. 
2005). Focusing only on one taxonomic group 
and its indicator power at a time may under-
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design in July-August 2020 (Vainikka et al. 
2024). Data are available in Fairdata, https://
doi.org/10.23729/24986d9b-fff1-4cb7-87b5-
467d1873369d. In this study, catch per unit effort 
(CPUE = individuals net–1 night–1) by species was 
used to reflect the relative abundance of species in 
a lake.

Aquatic invertebrates were sampled from 
June-July 2020 (for details see Table S1 in Sup-
plementary Information) using activity traps that 
consisted of a transparent plastic funnel attached 

the lakes for recreational fishing; however, we 
lack knowledge about the extent of the stocking 
(Turunen et al. 2023). Fishing in the study lakes of 
Evo region was prohibited until recent years.

Community data

Abundance data on fishes were collected using 
standardized Nordic gillnet surveys (Olin et 
al. 2014) using a stratified random sampling 

Fig. 1. Study lakes of a) Lieksa and b) Evo region. Background maps are from the open-source databank of 
National Land Survey of Finland, 1/2022 background map and topographic map set (CC 4.0) (NLS, 2022). 

https://doi.org/10.23729/24986d9b-fff1-4cb7-87b5-467d1873369d
https://doi.org/10.23729/24986d9b-fff1-4cb7-87b5-467d1873369d
https://doi.org/10.23729/24986d9b-fff1-4cb7-87b5-467d1873369d
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to a transparent glass jar (funnel diameter nar-
rowest point = 20 mm, jar diameter = 110 mm, 
jar length = 160 mm, volume = 1.5 L) with metal 
wire (Elmberg et al. 1992). Activity traps were set 
along the littoral zone with funnel opening facing 
to the centre of the lake (< 0.75 m depth). A total 
of 10 traps per lake per sampling session was used 
with a minimum distance of 3 m between traps. 
Five of the traps were set to a visually assessed 
densely vegetated microhabitat and the other five 
to a sparsely vegetated microhabitat (Elmberg et 
al. 1992). For logistic reasons, however, the traps 
were set to ca. 400 m part of the shoreline clos-
est to the access point to each lake. The sampling 
time was 24 hours after which the contents of the 
traps were sieved through 0.5 mm mesh and the 
retained invertebrates were transferred into sample 
tubes filled with 70% ethanol. All individuals were 
identified to order level except for Ceratopogo-
nidae and Chironomidae which were identified 
to family level due to their ecological differences 
between families (Wazbinski and Quinlan 2013, 
Strandberg et al. 2020). Also, Dytiscidae was sep-
arated from other Coleoptera families (Nilsson and 
Söderberg 1996). The total count of invertebrates 
caught by taxon was divided by the number of 
traps to form the average counts per jar (CPUE: 
individuals jar–1 24 hours–1).

Water bird pair survey (abundance as number 
of pairs) was conducted in spring 2020 and in 
spring 2022 (Table S1 in Supplementary Informa-
tion) using an established national point counting 
method (Koskimies and Väisänen 1991). In short, 
lake shorelines were observed (approximately 
3 minutes per spot) with binoculars by moving 
the point of vision slowly into one direction fol-
lowing the shoreline. Additional monitoring spots 
to cover blind spots were used if the whole lake 
could not be observed from one spot. Missing 
2020 data for Iso Ruuhijärvi, Haukijärvi and Haut-
järvi was supplemented with counting data from 
2019 or 2021. For the Lieksa region lakes, we used 
the average number of pairs observed in 2020 and 
2022 for our analyses.

Environmental data

Environmental variables were determined from 
water samples twice in the Lieksa region and 

once in the Evo region in the summer of 2020 
as described in Vainikka et al. (2024) (Table S1 
in Supplementary Information). In this study, we 
use the estimated mid-July values from (Vain-
ikka et al. 2024) for total phosphorus (total-P) 
(µg L–1), phosphate phosphorus (phosphate-P) 
(µg L–1), total nitrogen (total-N) (µg L–1), chlo-
rophyll a (mg L–1), dissolved organic carbon 
(DOC) (mg L–1), colour (mg Pt L–1), iron 
(mg L–1), alkalinity (mmol L–1), pH (5.29–7.56), 
water depth (m), surface area (ha), and Secchi 
depth (m). The water samples were taken at the 
deepest point of the lake from the depth of one 
meter using a Limnos sampler.

We categorized the lakes into three classes 
based on their DOC content. As lake type catego-
rization in national monitoring of lakes accord-
ing to the EU Water Framework Directive is 
based on water colour, the chosen categorization 
rather reflects the biological impact of organic 
carbon than integrative effects of colour. The first 
class represents clear-water lakes where DOC 
values have a predicted neutral or positive effect 
on lake’s primary production (DOC < 10 mg L–1, 
n = 8, Hanson et al. 2003, Solomon et al. 2015, 
Kelly et al. 2018). The second class includes 
slightly stained waters (DOC = 10–20 mg L–1, 
n = 14) where DOC values may already decrease 
primary production. The third class represents 
browner lakes (DOC > 20 mg L–1, n = 3) that are 
expected to show strongly depressed primary 
productivity due to decreased photic layer depth 
(Hanson et al. 2003, Solomon et al. 2015, Kelly 
et al. 2018).

Statistical analyses

Community composition was analysed using 
non-metric dimensional scaling (NMDS) 
using vegan-package (Oksanen et al. 2020) in 
R (ver. 4.1.0). NMDS rank orders entities in a 
dimensional space with the smallest stress pos-
sible. Stress measures the fit of the data to ordina-
tion, such that lower stress values indicate a better 
fit. The maximum number of random starts (999) 
was used to find a stable solution to a two-dimen-
sion projection (k = 2). If the stress measure was 
too high (> 0.2) (Clarke 1993), more dimensions 
were allowed. Community data were Wisconsin 
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double standardized to reduce the effect on highly 
abundant taxa and to form ordination with data 
collected using multiple methods and as such on 
different scales (Bray and Curtis 1957). Bray-
Curtis measure was used to form a dissimilarity 
matrix (Bray and Curtis 1957). Taxa observed in 
less than three lakes were omitted from the analy-
sis. Individual taxa were projected to the ordina-
tion as weighted averages of site scores.

Mantel's test was performed to examine the 
correlations between community composition 
and browning-related variables: DOC, water 
colour, iron, and Secchi depth. The distance 
matrix of environmental variables was formed 
using Euclidean distance. Spearman’s rank 
order correlation was used to assess correlations 
between ranked distances of sites in the envi-
ronmental matrix and Bray-Curtis dissimilar-
ity matrix. Permutations (n = 9999) were used 
to evaluate the significance of the correlation. 
Mantel's test was calculated using vegan-pack-
age (Oksanen et al. 2020) in R. The association 
between DOC (as a variable) and community 
dissimilarity was tested separately within the 
Lieksa and Evo regions to allow for potential 
regional differences. To further examine which 
taxa contribute to the dissimilarity of lakes with 
different DOC values, we divided lakes into three 
classes by DOC values (explained above). We 
used SIMPER-analysis (Clarke 1993) to investi-
gate how taxa contribute to differences between 
lakes of different DOC classes using vegan-pack-
age (Oksanen et al. 2020) in R. SIMPER-analysis 
decomposes the Bray-Curtis dissimilarity matrix 
and tests how individual taxa contribute to the 
dissimilarity between groups, assessing the statis-
tical significance by permutations (n = 999). We 
compared the taxa composition between DOC 
classes using the ANOSIM-function in vegan-
package (Oksanen et al. 2020). The ANOSIM-
function was used to test whether taxa composi-
tion differs among classes of lakes and assess the 
significance by forming a sampling distribution 
by permutating (n = 999) the grouping factor. 
We also tested whether the regional division 
caused differences in community composition 
(Bray-Curtis) by using ANOSIM-function, and 
examined which taxa contributed to dissimilarity 
between Lieksa and Evo lakes by using SIM-
PER-analysis.

Canonical correspondence analysis (CCA) 
was conducted using vegan-package (Oksanen 
et al. 2020) in R to examine the relationship 
between the abundance of aquatic taxa and the 
12 environmental variables, and to obtain a pro-
jection of small boreal lakes with multiple taxa. 
CCA is a method for analysing the relation 
between two sets of variables and is suitable 
for examining data on species abundance and 
environmental variables in matrix form. CCA 
uses X2 distance as a measure for assessing 
the distance between lakes and taxa. The statis-
tical significance of environmental variables was 
assessed using permutational tests (n = 9999). 
Stepwise backward model selection was used to 
remove the non-significant environmental vari-
ables. The threshold for reduction of individual 
variable was assessed by permutation (α = 0.05). 
Variables with a variance inflation factor (VIF) 
higher than 10 were omitted from the model 
selection to reduce the effect of multicollinearity 
(James et al. 2013). Due to this criteria, vari-
ables water colour, total-N, and chlorophyll a 
were omitted from the model. Before analyses, 
taxonomic abundance data were ln(1 + x) trans-
formed. Taxa observed in less than three lakes 
were omitted from the analysis. The significance 
of individual axes of CCA was assessed using 
permutation (n = 9999). Kendall’s τ was used to 
test individual taxa’s relation to DOC. Kendall’s 
τ is a non-parametric correlation coefficient that 
takes into account 0-values that were abun-
dant in the dataset. Kendall’s correlation analysis 
was performed using Kendall-package (McLeod 
2022) in R. Bonferroni correction was applied to 
reduce the type 1 error caused by multiple tests.

Results

Lake biota

In total, six fishes, six water bird species and 
14 invertebrate taxa were present in more 
than two study lakes (Table 1). In descend-
ing order of average abundance, the three 
most abundant fishes were perch (Perca flu-
viatilis) (present in all 25 lakes, average 
CPUE 15.1 ind. net–1 night–1), roach (Rutilus 
rutilus) (20 lakes, average 7.8 ind. net–1 night–1, 



138 Turunen et al. • BOREAL ENV. RES. Vol. 30

mean in lakes present 10.0 ind. net–1 net–1), 
and bleak (Alburnus alburnus) (7 lakes, 
average 0.5 ind. net–1 night–1, mean in lakes 
present 2.0 ind. net–1 night–1). The three most 
encountered bird species were the common 
gull (Larus canus, present in 5 lakes, average 
pairs 0.32, mean in lakes present 1.6 pairs), 
the common goldeneye (Bucephala clan-
gula) (7 lakes, average 0.28 pairs, mean in 
lakes present 1.0 pairs), and the Eurasian teal 
(hereafter teal, Anas crecca) (4 lakes, average 
0.28 pairs, mean in lakes present 1.75 pairs). 
The three most prevalent invertebrate taxa were 
Cladocera (present in 25 lakes, average CPUE 
49.9 individuals jar–1 24 hours–1), Copepoda 
(25 lakes, average 15.2 ind. jar–1 24 hours–1), and 
Acari (25 lakes, average 6.4 ind. jar–1 24 hours–1).

Community composition and 
environmental variables

Visually observed separation of taxa optima 
(weighted averages) in NMDS projection of the 
first two axes (Fig. 2) suggested that Cladocera, 
Copepoda, Isopoda and Oligochaeta co-occur in 
the lakes of the Evo region. Similarly, Diptera, 
Ephemeroptera, Odonata, Arctic loon (Gavia 
arctica), and bleak co-occur in the lakes of the 
Lieksa region. Teal alone differed from other 

taxa in ordination, and Coleoptera and white-
fish were mainly observed in the Lieksa region 
(Fig. 2). The data projection on the first and 
third NMDS axes formed a circular pattern, with 
Oligochaeta, Cladocera, and Copepoda being 
the most distinctive taxa (Fig. 2). The data pro-
jection on the second and third NMDS axes 
formed a circular pattern, with Ceratopogonidae 
and mallard. Lakes in Lieksa and Evo formed 
visually observable and statistically significant 
(Anosim, R = 0.40, p = 0.001) regional separa-
tion in ordination space (Fig. 2).

In Mantel’s test (Table 2), individually tested 
water-colour related variables that statistically 
significantly related to community composition 
were DOC, colour, and Secchi depth. Total-P 
concentration was close to statistical significance 
(r = 0.15, p = 0.053) whereas iron was clearly a 
non-significant variable. Regionally tested, com-
munity composition changed along DOC gradi-
ent in Lieksa region lakes (r = 0.24, p = 0.011) 
but did not reach statistical significance in Evo 
region lakes (r = 0.22, p= 0.143). 

Regional community dissimilarities and 
DOC classes

The largest significant contributors (SIMPER-
analysis) to community dissimilarity between 

Table 1. A list of studied taxa.

 Invertebrates Fish Water birds

Ceratopogonidae Bleak (Alburnus alburnus) Common goldeneye (Bucephala clangula)
Chironomidae Perch (Perca fluviatilis) Common gull (Larus canus)
Cladocera Northern pike (Esox lucius) Arctic loon (Gavia arctica)
Coleoptera Ruffe (Gymnocephalus cernua) Mallard (Anas platyrhynchos)
Copepoda Roach (Rutilus rutilus) Whooper swan (Cygnus cygnus)
Diptera	 Whitefish	(Coregonus lavaretus) Eurasian teal (Anas crecca)
Dytiscidae  
Ephemeroptera  
Hemiptera  
Acari  
Isopoda  
Odonata  
Oligochaeta  
Trichoptera 
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Fig. 2. Non-metric dimensional scaling of Bray-Curtis species dissimilarity in lakes (stress value = 0.17, dimensions 
(k) = 3). The red triangles represent the lakes in Lieksa the region (n = 17), while the blue circles represent the 
lakes in Evo (n = 8). Taxa are projected as weighted averages to lake ordination and indicated with black crosses. 



140 Turunen et al. • BOREAL ENV. RES. Vol. 30

Evo and Lieksa regions were Cladocera 
(p = 0.005), Copepoda (p = 0.001), mallard 
(p = 0.023), and teal (p = 0.033). All taxa show-
ing statistical differences had higher average 
abundance in Evo region compared to the Lieksa 
region (Table S2 in Supplementary Information).

Community composition (Bray-Curtis dis-
similarity) was statistically significantly different 
(Anosim, R = 0.22, p = 0.008) across the three 
categories of lakes based on their DOC concen-
tration (low < 10 mg L–1, 10 mg L–1 ≤ medium 
≤ 20 mg L–1, high > 20 mg L–1) (Table 3). The 
statistically significant taxa contributing to dis-
similarity between low DOC lakes and medium 
DOC lakes (SIMPER-analysis) were whitefish 
(p = 0.002) and Acari (p = 0.007) (Table S3 in 
Supplementary Information). Statistically sig-
nificant contributors to dissimilarity between 
medium and high DOC lakes were Trichop-
tera (p = 0.021), Isopoda (p = 0.027), and 
for low and high DOC; Isopoda (p = 0.019) 

and Trichoptera (p = 0.033). Kendall’s τ was 
used to assess the correlation between indi-
vidual taxa abundance and DOC concentra-
tion (Fig. S1 in Supplementary Information). 
None of the correlations was statistically sig-
nificant after correction for multiple testing 
(Bonferroni-corrected α = 0.0019).

Canonical correspondence analysis

The final model included total-P, surface area, 
and pH (x2 = 0.21, F = 2.08, p = 0.001; Table 4), 
and explained 22.9% of the total variance. The 
first canonical axis (eigenvalue = 0.11) explained 
11.6% of the total variation and 50.9% of 
the constrained variation and was statistically 
significant (x2 = 0.11, F = 3.17, p = 0.008). 
The second axis (ev.= 0.07) explained 7.2% of 
the total variation and 31.4% of the constrained 
variation, and was not statistically significant 
(x2 = 0.07, F = 1.96, p = 0.192). The third axis 
(ev.= 0.04) explained 4.1% of the variation and 
17.7% of the constrained variation and was not 
significant (x2 = 0.03, F = 1.11, p = 1). The 
environmental variables with the most explana-
tory power for the first axis were total-P and 
surface area (Table S4 in Supplementary Infor-
mation, Fig. 3). The environmental variable with 
the most explanatory power for the second axis 
was pH (Table S4 in Supplementary Informa-
tion, Fig. 3). 

Abundance of bleak, ruffe (Gymnocephalus 
cernua), whitefish, Coleoptera, Diptera, Ephem-
eroptera, Odonata, Arctic loon, and whooper 
swan (Cygnus cygnus) was positively related to 
surface area, and negatively to total-P (Table S5 
in Supplementary Information, Fig. 3). Taxa that 

Table 2. Mantel's test results of the relationship between Bray-Curtis dissimilarity and environmental variables 
including water colour, DOC, iron, Secchi depth, and phosphorus. Spearman rank order correlation was used with 
9999	permutations.	Statistically	significant	(Bonferroni	corrected	α = 0.01) variables are in bold.

 Variable Mantel's R p 90% 95% 97.5% 99%

 DOC 0.24 0.002 0.11 0.14 0.17 0.20
 Colour 0.25 0.003 0.11 0.14 0.17 0.20
 Secchi 0.25 0.002 0.11 0.14 0.17 0.20
 Fe 0.06 0.273  0.12 0.16 0.20 0.23
 Total-P 0.15 0.053 0.12 0.16 0.19 0.23

Fig. 3. Taxa distribution along the canonical axes and 
environmental variables.
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were positively associated with high nutrient 
concentration were Ceratopogonidae, Isopoda, 
teal, and mallard (Anas platyrhynchos) (Table S5 
in Supplementary Information, Fig. 3). Taxa such 
as roach, Odonata, Oligochaeta, and mallard 
were positively related to pH (Table S5 in Sup-
plementary Information, Fig. 3). Abundances of 
Dytiscidae, Hemiptera, Trichoptera, common 
goldeneye, common gull, teal, whooper swan 
associated with lower pH values (Table S5 in 
Supplementary Information, Fig. 3).

Discussion

Lake area, pH, and total phosphorus were the 
best variables in explaining the variation in the 
community composition among the study lakes. 
DOC can be considered as one of the main driv-
ers of aquatic production (Seekell et al. 2015, 
Arzel et al. 2020), but it did not have significant 
effect on community composition at the studied 
taxonomic resolution based on CCA. However, 
Lieksa region lakes sorted by DOC showed 
a significant change in community composi-
tion in Bray-Curtis dissimilarity. Between DOC 
categories, the most important taxa contribut-
ing to the dissimilarity between low DOC and 
medium DOC lakes were whitefish and Acari, 
whereas between medium and high DOC and 
low and high DOC, they were Trichoptera and 

Isopoda. However, as whitefish has no natural 
recruitment in the study lakes, their occur-
rence pattern rather reflects human preference 
in stocking whitefish to clearwater lakes. Cor-
relation analyses did not reveal strong associa-
tions between the abundance of individual taxa 
and DOC. 

In the current study, the first CCA axis 
reflected phosphorus and surface area gradi-
ents, while the second CCA axis, reflecting pH 
variation, was not statistically significant. The 
observation that only a small number of environ-
mental variables may explain community com-
position aligns with the study of Paszkowski 
and Tonn (2000) and suggests that few key 
environmental gradients dominate community 
formation. With increasing lake size, the diver-
sity of different microhabitats increases as well 
as the absolute carrying capacity of the limited 
environment (Heino 2013, Fried-Petersen et al. 
2020). For example, compared to small ponds 
with relatively steep shore slopes, larger lakes 
may provide wider vegetated littoral habitats 
for macroinvertebrates such as Ephemeroptera 
and Odonata (Tolonen et al. 2003, Bartels et 
al. 2021), which were associated with a large 
surface area in our study (range of our lakes 
1.2–37.7 ha). While Trichoptera showed a weak 
association with small surface area in our study, 
the presence of caddisflies likely rather reflects 
some fine-scaled environmental characteristics 

Table 3. Distribution of environmental variables and lake counts in DOC classes.

  DOC < 10 mg L–1	 10	≤	DOC	≤	20	mg	L–1 > 20 mg L–1

Total-P (µg L–1) 6.0–20.0 11.5–52.6 14.6–29.6
Area (ha) 3.9–18.0 2.2-37.7 1.2–14.4
Depth (m) 2.4–14.5 1.5–12.0 5.2–13.0
Colour (mg Pt L–1) 8.7–108.7 87.6–218.3  214.5–293.4 
Lakes (n) 8 14 3

Table 4. Statistical	significance	of	environmental	variables	in	the	most	optimal	backward	selected	CCA	model	(per-
mutations = 9999).

 Variable X2 D.F. F p

 Total-P 0.07 1 2.01 0.019
 Area 0.08 1 2.29 0.006
 pH 0.06 1 1.93 0.018
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that were not assessed in this study. Because 
small lakes tend to have low habitat diversity 
(Heino 2013), they may be inhabited mostly by 
generalist taxa (Paszkowski and Tonn 2000). In 
our study, small lake size was weakly associated 
with generalist taxa such as Isopoda (Lau et al. 
2013) and Chironomidae which is a species-rich 
and widely distributed group of insects that can 
inhabit various niches (Pinder 1986). Acidity, 
i.e. pH is a well-known driver for invertebrate 
community composition in aquatic ecosystems 
(Feldman and Connor 1992, Fried-Petersen et 
al. 2020). High pH values generally have a posi-
tive influence on species abundance and richness 
(i.e. pH range = 4.3–6.6; Bowman et al. 2014), 
whereas low pH values tend to have the oppo-
site effect (Stendera and Johnson 2008). In our 
results, higher pH values were associated with 
Oligochaeta which is shown to prefer high pH 
(Bowman et al. 2014). However, the observed 
pH range was rather narrow (pH = 5.29–7.56) 
suggesting that clear negative effects of low 
pH may not have appeared in this dataset. It is 
important to note that using low taxonomic reso-
lution in analyses (e.g. Cladocera and Copepoda) 
overlooked variation in community structure, for 
example within zooplankton communities.

Fish species diversity generally increases 
with lake size (Barbour and Brown 1974, Helm-
inen et al. 2000, Paszkowski and Tonn 2000) 
as a result of increasing depth and shoreline 
diversity on microhabitat diversity (Eros et al. 
2009, Heino et al. 2010) and potentially increas-
ing connectivity with other lakes. Likewise, fish 
species composition was associated with surface 
area and phosphorus concentration in this study. 
Large lakes with large pelagic habitats support 
pelagic plankton-feeding species, such as bleak 
and whitefish (Liu and Uiblein 1996, Kahilainen 
et al. 2005). This was supported by our observa-
tion of their positive association with the lake 
surface area. Ruffe, as a benthic insectivore, 
is often relatively rare in small lakes and may 
simply benefit from larger surface area as that 
could better maintain a genetically and demo-
graphically sustainable population size (Hölker 
and Thiel 1998). The main effect of phosphorous 
on fish species richness is unimodal, meaning 
that species richness (mainly cyprinid diversity, 
Helminen et al. 2000, Olin et al. 2002) increases 

with eutrophication at low phosphorus concen-
trations but decreases with very high concentra-
tions (Jeppesen et al. 2000). In this study, no 
clear associations between fish species and envi-
ronmental gradients were observed.

The composition of water bird community 
was related to the lake surface area, pH, and 
phosphorus concentration which is mainly in 
line with the previous studies (Paszkowski and 
Tonn 2000, Paszkowski and Tonn 2006, Epners 
et al. 2010). The surface area has a strong posi-
tive effect on the number of water bird species 
that can inhabit a lake (Paszkowski and Tonn 
2000, Roach and Griffith 2015). Usually, also 
the body size of the species increases with lake 
surface area (Paszkowski and Tonn 2000), which 
is visible in the CCA ordination of the current 
study (e.g., whooper swan and Arctic loon in 
large lakes, teal in small lakes). The size of the 
lake may limit large avian species that need 
a long runway to take off (e.g., Arctic loon, 
whooper swan). Lake shallowness accompanied 
by large surface area is related to an increase 
especially in duck species (Paszkowski and Tonn 
2000). The general effect of pH on water birds 
is weak but associated with patterns in feed-
ing guilds (Elmberg et al. 1994, Paszkowski 
and Tonn 2006). In our study, mallard was the 
only duck species that showed some association 
with high pH. Phosphorus concentration, as a 
proxy for primary productivity, was suggested 
to have a positive effect on the density of breed-
ing and moulting water birds in the previous 
study (Epners et al. 2010). However, phosphorus 
(range = 6.0–52.6 µg L–1) did not explain vari-
ation in the composition of breeding water bird 
communities but explained the composition of 
moulting water bird communities (Epners et al. 
2010). We quantified the breeding pairs suggest-
ing that the composition of water bird communi-
ties in the study lakes were mostly driven by lake 
size.

It is important to recognize that community 
patterns are affected by many regional and his-
torical filters in addition to contemporary envi-
ronmental factors (Tonn et al. 1990, Heino et al. 
2017). In our study, however, environmental var-
iables were most likely the dominating drivers 
of community composition, since we included 
avian species and several invertebrate taxa (with 
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aerial adult stages for example) that can select 
and move along different habitats over annual 
or shorter time scales (De Bie et al. 2012). 
Bleak, whitefish, Hemiptera, whooper swan, and 
common gull, were not observed in the study 
lakes of Evo region. These species occur com-
monly in southern Finland surrounding Evo and 
the other lakes in the area (Olin et al. 2010, 
Holopainen et al. 2022) implying that their scar-
city was most likely caused by environmental 
differences rather than their restricted dispersal. 
Also, the small sample of Evo lakes (n = 8) may 
explain the absence of individual taxa. However, 
the community composition (Bray-Curtis) was 
significantly different between Evo and Lieksa 
regions, indicating the potential importance of 
regional filters and climate conditions on com-
munity composition. It is noteworthy that a spe-
cies itself may work as a filter for other taxa 
(Väänänen et al. 2012, Nummi et al. 2016). 
For example, water bird abundance is positively 
related to food availability (e.g., invertebrates) 
(Nummi and Pöysä, 1993, Setash et al. 2024), 
and predatory fish can negatively affect the 
abundance of water birds (Paasivaara and Pöysä, 
2004, Elmberg et al. 2010). Fish and water birds 
both compete for the same food resources (inver-
tebrates, juvenile fish) (Väänänen et al. 2012, 
Nummi et al. 2016). However, Paszkowski and 
Tonn (2000) suggested that environmental vari-
ables are more central drivers for fish and water 
bird assemblages than biotic interactions. 

The most interesting difference in commu-
nity composition was caused by variables that 
are involved in browning of the waters. DOC, 
water colour, and Secchi depth had significant 
effect on community composition. This result 
agrees with previous studies highlighting the 
significance of browning on the structure and 
functioning of aquatic ecosystems (Arzel et al. 
2020, Blanchet et al. 2022). However, the com-
munity composition had a statistically significant 
association with DOC only among Lieksa lakes. 
This result may be due to smaller sample size of 
Evo region lakes (n = 8) which reduces statisti-
cal power, or higher average of DOC in those 
lakes (15.8 ± 5.5 mg L–1) compared to Lieksa 
lakes (n = 17, DOC = 11.4 ± 5.5 mg L–1). These 
results might also support the idea that the most 
prominent effects of DOC occur at concentra-

tion values close to 10 mg L–1 (Kelly et al. 
2018). However, it is important to recognize that 
most of the study lakes (n = 14) were medium 
DOC class lakes and high DOC class comprised 
only three lakes. As such, future studies should 
include a larger number of lakes presenting high 
and low DOC concentrations to better evaluate 
the structural variation of aquatic communities 
along DOC gradients.

CCA analysis did not suggest any strong 
relationship between DOC-related variables and 
community composition. However, the effect of 
DOC might be hidden by other environmental 
covariates with similar but stronger impacts e.g., 
positive correlation with nutrients (Vainikka et 
al. 2024). For example, phosphorus has similar 
positive effects on primary production as DOC in 
small concentrations (Solomon et al. 2015, Kelly 
et al. 2018). However, prolonged browning leads 
to lower primary productivity and reduced mac-
roinvertebrate species abundance, with potential 
cascading effect on secondary consumers such 
as fish and water birds (Arzel et al. 2020). For-
estry practices and land use can increase both 
nutrient and dissolved organic carbon (DOC) 
loads to lake ecosystems through ditches and 
forest drainages (Miettinen et al. 2020, Finér 
et al. 2021, Holopainen and Lehikoinen 2022), 
which may explain the similar effects observed. 
Regionally, the surrounding areas of lakes in 
the Lieksa region were heavily used for forestry 
(Kärkkäinen et al. 2019), whereas the Evo area 
had quite limited agricultural land use in addi-
tion to the less intensively used forested areas 
(Forsius et al. 2016). 

Decomposition of Bray-Curtis dissimilarity 
of lakes divided to classes by DOC revealed taxa 
that had the largest contribution to differences 
between classes. Between low and medium DOC 
lakes, whitefish and Acari were significant con-
tributors to these differences, both associating 
with low DOC lakes. Aquatic mites can occur in 
a variety of different environmental conditions 
(Di Sabatino et al. 2000) but generally, they 
can be used as indicators of good water quality 
(Goldsmidt 2016), and our results suggest that 
the relative abundance of water mites is higher in 
low DOC lakes. Trichoptera and Isopoda had the 
strongest significant contribution to differences 
between both medium and high DOC lakes, and 
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between low and high DOC lakes. It is most 
likely due to capability of these taxa to use detri-
tus (Bjelke and Herrmann 2005), which may be 
abundant in high DOC lakes. Isopoda includes 
the freshwater isopod Asellus aquaticus that is a 
common species in boreal lakes and capable of 
feeding on detritus (Kesti et al. 2022, Strandberg 
et al. 2023). None of the taxa with significant 
contribution to differences had the highest aver-
age abundance in medium DOC lakes which 
suggests that medium DOC class may be too 
wide in the context of DOC values or that only 
extreme values in DOC induce differences in 
community composition.

The effects of primary production, water 
quality and lake morphometry on community 
composition are generally well known in large 
lakes (Tonn et al. 1990, Pöysä et al. 2019, Cohen 
et al. 2020). Small boreal lakes may be particu-
larly vulnerable to rapid community changes due 
to immediate effects of climate change related 
weather events and land uses including inten-
sive forestry practises (Roulet and Moore 2006, 
Monteith et al. 2007, Albrecht et al. 2023). 
The current study increases our knowledge on 
these potential responses by providing data on 
little-studied small but numerous boreal forest 
lakes, where browning and associated changes 
can be major determinants of changes in com-
munity composition. Overall, increasing DOC is 
related to the deterioration of the overall quality 
of the aquatic environment, which also affects 
the quality of fish that boreal lakes can provide 
to humans (Strandberg et al. 2016). We highlight 
the importance of governing human land-use 
induced leaching of organic and inorganic mate-
rial that can affect the whole faunal community 
of small boreal forest lakes.
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