Methane fluxes at the sediment–water interface in some boreal lakes and reservoirs

Jari T. Huttunen^{1)*}, Tero S. Väisänen²⁾, Seppo K. Hellsten³⁾ and Pertti J. Martikainen¹⁾

¹⁾ Department of Environmental Sciences, Bioteknia 2, University of Kuopio, P.O. Box 1627, FI-70211 Kuopio, Finland (*corresponding author's e-mail: jari.huttunen@uku.fi)

²⁾ North Ostrobothnia Regional Environment Centre, P.O. Box 124, FI-90101 Oulu, Finland

³⁾ Finnish Environment Institute, P.O. Box 413, FI-90014 University of Oulu, Finland

Received 3 Nov. 2004, accepted 24 Aug. 2005 (Editor in charge of this article: Johanna Mattila)

Huttunen, J. T., Väisänen, T. S., Hellsten, S. K. & Martikainen, P. J. 2006: Methane fluxes at the sediment–water interface in some boreal lakes and reservoirs. *Boreal Env. Res.* 11: 27–34.

Methane (CH₄) fluxes at the sediment–water interface were studied during summer in six lakes and two reservoirs in Finland. The oxygen penetration in the sediments of these boreal mesotrophic–hypereutrophic freshwater ecosystems varied from 0 to 8 mm, and the CH₄ concentrations within the uppermost 10 cm from 17 to 51 000 ppm(v). The diffusive methane fluxes to the overlying water column ranged from 0.44 to 105 mg m⁻² d⁻¹ and correlated negatively ($R^2 = 0.68$) with the oxygen penetration in the sediment. This demonstrated that the CH₄ concentration and the diffusive CH₄ fluxes in the lake sediments are closely related to the O₂ conditions, which regulate both CH₄ production and CH₄ oxidation in the sediment. The comparison between the diffusive CH₄ fluxes at the sediment–water interface and CH₄ fluxes at the water–air interface previously measured *in situ* in one lake and two reservoirs showed that the sediment CH₄ fluxes poorly predict the CH₄ release from the water surface to the atmosphere. This indicates that the CH₄ oxidation in water column, advective transport of CH₄ and CH₄ ebullition have importance in the net CH₄ release to the atmosphere. The increased CH₄ concentration in water column close to the sediment is an indicator of serious oxygen depletion within sediment.

Introduction

Methane (CH₄) is an endproduct of anaerobic organic carbon decomposition in oxygen-depleted sediments (Kiene 1991). It is a greenhouse gas in the atmosphere (Khalil and Rasmussen 1983), and this knowledge has been the impetus to examine CH₄ emissions from various natural and disturbed ecosystems, including freshwater lakes (Michmerhuizen *et al.* 1996, Striegl and Michmerhuizen 1998, Casper *et al.* 2000, Huttunen *et al.* 2001a, 2001b, 2003, 2004, Joyce and Jewell

2003) and reservoirs (Duchemin *et al.* 1995, 2000, St. Louis *et al.* 2000, Huttunen *et al.* 2002, 2003, Joyce and Jewell 2003, Soumis *et al.* 2004).

Methane is produced in sediments by anaerobic methanogenic archaea. Their activity depends on many environmental factors, such as supply of organic matter, availability of electron acceptors and temperature (Kiene 1991). For example, Kelly and Chynoweth (1981) found that CH_4 production in the sediment increased with the increase in the input of organic matter to the

Fig. 1. Studied boreal lakes and reservoirs in Finland.

sediment, which agrees with the observation that the CH_4 production capacity of sediment increases with increasing lake trophy (Casper 1992). Although over 90% of the CH_4 produced can be oxidized in the uppermost aerobic sediment layers and water column (Kiene 1991), high CH_4 emissions have been detected from lakes and reservoirs which contain large amounts of degradable organic matter in their sediments (Duchemin *et al.* 1995, Michmerhuizen *et al.* 1996, Striegl and Michmerhuizen 1998, Casper *et al.* 2000, Huttunen *et al.* 2001a, 2001b, 2002, 2003). The large number of lakes in northern regions have to be considered in the global CH_4 budget. For example in Finland (Raatikainen and Kuusisto 1990) and Canada (Environment Canada 1998), the lakes occupy about 10% and 7.6% of the country's surface area, respectively.

We studied the distributions of CH_4 and O_2 in intact sediment cores taken from the sediments of some boreal lakes and reservoirs in Finland, and calculated the CH_4 fluxes at the sediment-water interface by a diffusion model. Some of these fluxes were compared with those previously measured at the water-air interface *in situ*. The trophic state of these aquatic ecosystems varied, allowing us to study the effect of eutrophication-associated O_2 depletion on the CH_4 release from sediments.

Material and methods

Study sites

The study sites, six small freshwater lakes and two large hydroelectric reservoirs (Table 1), are located from the southern to the northern boreal zone in Finland (Fig. 1). The reservoirs were the largest in western Europe. The sites were shallow with mean depths ranging from 1.1 to 6.3 m (Table 1). The trophic states of the sites ranged

Table 1. Trophic state and morphometric properties of the studied lakes and reservoirs.

Lake/Reservoir ^a	Trophic state ^b	Volume (km ³)	Area (km ²)	Mean depth (m)	Max. depth (m)
Tuusulanjärvi	hypereutrophic	0.0192	5.95	3.2	10.0
Postilampi	hypereutrophic	0.00009	0.03	3.2	4.3
Soiviojärvi	eutrophic	0.0242	7.86	3.2	10.0
Takajärvi	eutrophic	0.0012	1.10	1.1	1.5
Luiminkajärvi	meso-eutrophic	0.0113	3.50	3.2	7.9
Ranuanjärvi	eutrophic	0.0196	4.80	4.1	8.5
Lokka	eutrophic	0.5-2.063	216-417	2.3-4.9	10.0
Porttipahta	mesotrophic	0.15–1.353	34–214	4.4-6.3	34.5

^a Data for Tuusulanjärvi are from Pekkarinen (1990), Postilampi from Saarijärvi and Lappalainen (2001) and J.T. Huttunen (unpubl. data), Soiviojärvi from this study, Takajärvi, Luiminkajärvi and Ranuanjärvi from Puro *et al.* (1999), and reservoirs Lokka and Porttipahta from Hellsten *et al.* (1993) and Lepistö (1999).

^b Classification is based on the average summer chlorophyll-*a* concentration in the epilimnion according to Forsberg and Ryding (1980).

from mesotrophic to hypereutrophic (Table 1), based on their average summer chlorophyll-*a* concentrations in the epilimnion (mesotrophic $3-7 \ \mu g \ l^{-1}$, eutrophic 7–40 $\ \mu g \ l^{-1}$, and hypereutrophic > 40 $\ \mu g \ l^{-1}$; Forsberg and Ryding 1980). The sampling stations in reservoir Lokka and Takajärvi were situated at the sediment erosion/ transportation zone, whereas the other sampling stations were situated at the sediment accumulation zone which generally represents the deepest profundal region of the lake (Table 2).

Sediment sampling and the analyses of O₂ and CH₄ concentrations

Sediment samples were taken from the study lakes once in July or August from 1994 to 1997 (Table 2). The procedures of sampling and analyses of the O_2 and CH_4 concentrations are presented in Hellsten and Väisänen (1998). Briefly, 23–30-cm long sediment cores were taken with a Limnos gravity sediment corer (Limnos Ltd., Turku), containing a 50-cm acrylic core with an internal diameter of 10 cm. We did not measure the O_2 and CH_4 concentrations from the water above the sediment, because the overlying water can be mixed during sampling in this kind of an open-top corer. Penetration of O_2 into the sediment was determined immediately after the samplings at 1 mm intervals with Diamond General Microsensor II equipment and an O₂ mini-electrode (Diamond General Development Corp., Ann Arbor, MI). The sediment cores were then sub-sampled at 1-cm depth intervals into 2-ml tubes. The tubes were immediately emptied into 60-ml polypropylene extraction syringes (pistons removed) (BD Plastipak, Becton Dickinson, Dublin) equipped with three-way stopcocks (Connecta, Ohmeda GmbH + Co, Erlangen). The pistons were reassembled to the extraction syringes filled with the sediment and ambient air. Half of the headspace gas in each extraction syringe was then injected into a separate sample syringe. From 5 to 15 ml of saturated NaCl solution (including 0.18 mol l^{-1} of H_2SO_4) was then added into the extraction syringes for degassing all CH₄ out from the sediment pore water and for preservation. The extraction syringe was shaken vigorously and the gas was injected into the sample syringe. The sample syringes were sent to the Laboratory of Environmental Microbiology, National Public Health Institute (Kuopio, Finland) where the CH₄ analyses were carried out. The CH₄ concentrations were determined within 24 h of sampling with a Hewlett-Packard 5890 Series II gas chromatograph (Palo Alto, CA) equipped with a flame ionization detector (FID) (for details see Huttunen et al. 2001a, 2002).

Lake/Reservoir	Sampling time	Sampling depth (m)	Bottom type ^a	Sediment type ^b	Water content ^b (%)	Organic matter ^b (% D.W.) ^c	Porosity ^d
Tuusulanjärvi	August 1995	7.8	А	clay gyttja	89.0	11.7	0.90
Postilampi	August 1996	4.2	А	gyttja	88.3	42.7	0.97
Soiviojärvi	August 1994	9.8	А	silty gyttja	> 85 ^e	32.0	0.95
Takajärvi	July 1997	1.1	Е	sandy gyttja	94.3	38.7	0.90
Luiminkajärvi	July 1997	6.2	А	silty gyttja	96.9	27.2	0.95
Ranuanjärvi	July 1997	7.1	А	gyttja	96.1	31.2	0.95
Lokka	August 1995	8.8	E/T	peaty gyttja	97.8	67.8	0.95
Porttipahta	August 1995	32.5	А	gyttja	95.1	45.5	0.92

Table 2. Sampling time and characteristics of the sampling sites and sediments of the studied lakes and reservoirs.

^a According to Håkanson and Jansson (1983), A = accumulation, T = transportation, E = erosion.

^b Data for Tuusulanjärvi are from Pekkarinen (1990), Postilampi from Saarijärvi and Lappalainen (2001) and this study, Soiviojärvi from this study, Takajärvi, Luiminkajärvi and Ranuanjärvi from Puro *et al.* (1999), and Lokka and Porttipahta from Hellsten *et al.* (1993).

° D.W. is dry weight.

Based on the penetrometer measurement, described in Håkanson and Jansson (1983).

^d Estimated from the data presented by Sweerts (1990).

Fig. 2. Oxygen concentrations in the surficial sediment in the studied lakes and reservoirs.

Calculation of CH₄ fluxes at the sediment–water interface

The diffusive CH_4 fluxes from the sediments were calculated using Fick's first law of diffusion according to Berner (1980) (Eq. 1):

$$J_{s} = -\phi \left(D_{0} \theta^{-2} \right) \left(\frac{dc}{dz} \right)$$
(1)

where J_s is the diffusive CH₄ flux at the sediment– water interface (Sweerts 1990), ϕ the porosity of the sediment (values 0.90–0.97 were estimated for from data presented by Sweerts (1990), based on the sediment type and the amount of organic matter in the sediments in our study; Table 2), D_0 the diffusion coefficient for CH₄ in water (1.5 × 10⁻⁵ cm² s⁻¹; Broecker and Peng 1974), θ the tor-

 Table 3. Methane fluxes at the sediment–water interface in the studied lakes and reservoirs.

Lake/Reservoir	Methane flux (mg m ⁻² d ⁻¹)
Tuusulanjärvi	72
Postilampi	105
Soiviojärvi	8.6
Takajärvi	4.8
Luiminkajärvi	27
Ranuanjärvi	76
Lokka	0.44
Porttipahta	25

Fig. 3. Methane concentrations (ppm(v)) in the sediments of the studied lakes and reservoirs.

tuosity (value 1.2 was approximated for the tortuosity squared from Sweerts (1990)), and dc/dzthe measured vertical 2–3 cm CH₄ concentration gradient within the first 4 cm of the surface sediment. Positive fluxes indicate here a loss of CH₄ out from the sediment.

Results

The O_2 concentrations decreased with increasing depth in the sediments, except in lake Postilampi where even the uppermost sediment was anoxic (Fig. 2). Soiviojärvi had the highest O_2 concentrations in its sediment. Reservoirs Lokka and Porttipahta had rather similar O_2 profiles, and the O_2 concentrations in their sediments were greater than those in Takajärvi, Ranuanjärvi, Luiminkajärvi and Tuusulanjärvi, which all had similar O_2 profiles in their sediments. The oxygen penetration into the sediment varied from 0 mm in lake Postilampi to 8 mm in Takajärvi (Fig. 2).

The CH₄ concentrations generally increased with increasing sediment depth, with the highest vertical gradient found in reservoir Lokka (Fig. 3). Among all the sediments, the CH₄ concentrations ranged from 17 to 51 000 ppm(v) (parts per million by volume, i.e. μ l l⁻¹) within the uppermost 10 cm, the maximum being as high as 200 000 ppm(v) at the depth of 28 cm. The sediment CH_4 concentrations were highest in lake Postilampi and lowest in Soiviojärvi (Fig. 3), the situation opposite to the sediment O_2 concentrations (Fig. 2).

The diffusive CH_4 fluxes at the sediment– water interface were higher in Postilampi, Ranuanjärvi and Tuusulanjärvi than in Luiminkajärvi, Soiviojärvi and Takajärvi (Table 3). Reservoir Lokka had the lowest CH_4 flux whereas Reservoir Porttipahta had an intermediate flux compared with the CH_4 fluxes of the lakes. The diffusive CH_4 flux at the sediment–water interface correlated negatively ($R^2 = 0.68$, n = 8, p < 0.05) with the oxygen penetration depth in the sediments (Fig. 4).

Discussion

There was a large variation in the sediment CH₄ concentration profiles between the study sites. This variation is a result of the complex interactions between factors such as microbial processes, amount and quality of organic matter, availability of electron acceptors, nutrient supply, temperature, pH and physical mixing of the water column/sediment surface (Kiene 1991). Furthermore, up to over 90% of the CH₄ produced in anoxic sediments can be oxidized by CH₄-oxidizing bacteria at the oxic sediment-water interface and in the water column (Kuivila et al. 1988, Frenzel et al. 1990, Kiene 1991, Liikanen et al. 2002). The relatively strong negative correlation between the CH₄ fluxes and the O₂ penetration in the surface sediments of the study sites highlighted the crucial role of O_{2} in the regulation of diffusive CH₄ fluxes from the boreal freshwater sediments. The results demonstrated that the release of CH₄ from lakes to the atmosphere can be increased by increasing eutrophication, which causes O2 depletion of the water column and sediment (see also Huttunen et al. 2003). Huttunen et al. (2001a) showed that wintertime accumulation of CH_{4} in eutrophied boreal lakes could be decreased by artificial oxygenation of the hypolimnion, which supports this conclusion. Natural oligotrophic-mesotrophic lakes in Finland have also shown lower CH_{4} emissions to the atmosphere throughout the year than eutrophied, seasonally oxygen depleted

100 ▲ Luiminkajärvi △ Ranuanjärvi Lokka Methane flux (mg m⁻² d⁻¹) 80 60 40 20 0 0 2 6 8 10 Oxygen penetration depth (mm)

120

Fig. 4. A linear regression between CH₄ flux at the sediment–water interface and oxygen penetration depth in the sediment of the studied lakes and reservoirs ($R^2 = 0.68$, n = 8, p < 0.05).

lakes (Huttunen *et al.* 2003, 2004). However, it should be stressed that our results represent the warm period only and do not include seasonal variation (e.g., Striegl and Michmerhuizen 1998, Huttunen *et al.* 2003).

The data of the present study did not show any major difference in the CH_{4} fluxes between the study lakes and the 25-27 years old reservoirs. The CH₄ emissions from reservoirs have generally been proposed to exceed those of natural lakes partially due to decomposition of flooded organic matter (St. Louis et al. 2000). However, it should be noted that most of the lakes in our study were relatively eutrophic, while the reservoirs were more oligotrophic than most of the lakes and situated at higher latitudes (Fig. 1 and Table 1). The CH_4 fluxes at the sediment-water interface in the profundal zone of our boreal lakes and reservoirs, 0.44-105 mg m⁻² d⁻¹, correspond to the fluxes measured from the sediments of various temperate lakes; e.g., 3.1-119 mg m⁻² d⁻¹ in four basins (average 27 mg m⁻² d⁻¹) of acidic alpine Lake Orta, Italy (Adams and Baudo 2001), 1.7 mg m⁻² d⁻¹ in the profundal zone of eutrophic Müggelsee (Rolletschek 1997) and 37–111 mg m⁻² d⁻¹ (average 66 mg m⁻² d⁻¹) in eutrophic Plußsee (Adams and Naguib 1999), Germany. For comparison, the

Tuusulanjärvi
 Postilampi

Soiviojärvi
 Takaiärvi

 CH_4 fluxes from the sediments of tropical Rapel and La Paloma reservoirs in Chile have ranged from 20.9 to 401 mg m⁻² d⁻¹ during the summer season (Adams *et al.* 2000).

The fluxes of CH₄ have also been measured at the water-air interface at the sampling locations of this study in lake Postilampi and reservoirs Lokka and Porttipahta. The CH₄ flux we observed at the sediment-water interface in lake Postilampi (105 mg m⁻² d⁻¹) was higher than the mean water-atmosphere CH_4 emissions of 57-78 mg m^{-2} d⁻¹, measured from the lake during the open water seasons in 1996-1998 with floating chambers (Huttunen et al. 2003). The lower flux to the atmosphere could result from the CH_4 oxidation at the oxycline (e.g., Kiene 1991). In contrast, the diffusive sediment-water CH₄ flux in reservoir Lokka (0.44 mg m⁻² d⁻¹) was lower than the mean CH_4 emissions of 8.6 and 12 mg m⁻² d⁻¹ to the atmosphere during the open water seasons in 1994 and 1995 (Huttunen et al. 2002). This suggests that CH₄ in reservoir Lokka was transported from the sediment mainly by ebullition. The CH₄-rich bubbles released from the sediment can largely bypass oxidation processes in the surface sediment and water column (Kiene 1991, Chanton and Whiting 1995). The CH_4 concentrations in the surface sediment were lower in reservoir Lokka than generally in the lakes of this study, but in the deeper sediments of Lokka, the CH₄ concentrations were obviously high enough to support bubble formation (Fig. 3). A physical disturbance of the bottom sediment may trigger episodic ebullition in this kind of a shallow and open reservoir (Duchemin et al. 2000, Joyce and Jewell 2003). In Lokka, the ebullitive fluxes of CH₄ measured with submerged bubble traps have mostly exceeded the CH₄ fluxes at the water-air interface measured with floating chambers (Huttunen et al. 2002). In our sediment sampling and sub-sampling some bubbles could be lost from the sediment, leading to an underestimation of the sediment CH₄ concentrations. The sampling stations in reservoir Lokka and Takajärvi with the lowest CH₄ fluxes (Table 2) were situated in the sediment erosion/transportation zones. There the physical mixing of the hypolimnion and sediment surface could also affect the sediment CH_4 concentration profiles, thus the actual CH_4 fluxes from these sediments were probably not controlled by the diffusion and ebullition only.

The CH_4 ebullition also had a large contribution to the CH_4 emission from Postilampi; the release of CH_4 in the bubbles had been 36–46 mg m⁻² d⁻¹ during the summer 1996 (Huttunen *et al.* 2001b). In reservoir Porttipahta, the diffusive sediment–water CH_4 flux (25 mg m⁻² d⁻¹) was higher than the mean CH_4 emission measured with floating chambers, 4.8 mg m⁻² d⁻¹ (Huttunen *et al.* 2002), emphasizing importance of CH_4 oxidation in the water column in the regulation of CH_4 emissions to the atmosphere. The CH_4 ebullition from reservoir Porttipahta was low compared with the CH_4 emissions measured with the chambers (Huttunen *et al.* 2002).

Although our measurement of the diffusive CH₄ fluxes at the sediment-water interface predicted the increase in CH4 release from the sediments with increasing O₂ depletion, the method failed to predict the actual CH₄ emissions from lakes to the atmosphere. This is because the net CH₄ production and CH₄ fluxes to the atmosphere are controlled by both the production and oxidation of CH₄ and by the physical mechanisms that transport CH₄ from the sediment through the water column to the atmosphere. The close association between the CH₄ flux and O₂ conditions in the surface sediments indicated that increased CH₄ concentrations near the sediments of boreal lakes could be regarded as a sign of a serious oxygen depletion of the sediment. The sediment oxygen depletion, which can be partially attributed to CH₄ oxidation, and the associated CH₄ ebullition can cause further eutrophication by increasing the internal nutrient loading in the lakes (Saarijärvi and Lappalainen 2001, Liikanen et al. 2003).

Acknowledgements: This paper is dedicated to the memory of Mr. Pekka Sohlo, who was attending most of the lake studies as a field manager. His unexpected death has left a vacancy difficult to fill. Juha Riihimäki is acknowledged for his help in the field and construction of the figures. This work was financially supported by the Technical Research Centre of Finland and several client-oriented projects, and by the Finnish Cultural Foundation and the Niilo Helander Foundation.

References

Adams D.D. & Baudo R. 2001. Gases (CH₄, CO₂ and N₂) and pore water chemistry in the surface sediments of Lake Orta, Italy: acidification effects on C and N gas cycling. J. Limnol. 60: 79-90.

- Adams D.D. & Naguib N. 1999. Carbon gas cycling in the sediments of Plußsee, a northern German eutrophic lake, and 16 nearby water bodies of Schleswig-Holstein. Arch. Hydrobiol. Spec. Issues Adv. Limnol. 54: 91–104.
- Adams D.D., Vila I., Pizarro J. & Salazar C. 2000. Gases in the sediments of two eutrophic Chilean reservoirs: potential sediment oxygen demand and sediment–water flux of CH₄ and CO₂ before and after an El Nińo event. *Verh. Internat. Verein. Limnol.* 27: 1376–1381.
- Berner R.A. 1980. *Early diagenesis: a theoretical approach*, Princeton University Press, Princeton, N.J.
- Broecker W.S. & Peng T.H. 1974. Gas exchange rates between air and sea. *Tellus* 26: 21–35.
- Casper P. 1992. Methane production in lakes of different trophic state. Arch. Hydrobiol. Beih. Ergebn. Limnol. 37: 149–154.
- Casper P., Maberly S.C., Hall G.H. & Finlay B.J. 2000. Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. *Biogeochemistry* 49: 1–19.
- Chanton J.P. & Whiting G.J. 1995. Trace gas exchange in freshwater and coastal marine environments: ebullition and transport by plants. In: Matson P.A. & Harriss R.C. (eds.), *Biogenic trace gases: measuring emissions from soil and water*, Blackwell Science, Oxford, pp. 98–125.
- Duchemin É., Lucotte M., Canuel R. & Chamberland A. 1995. Production of the greenhouse gases CH₄ and CO₂ by hydroelectric reservoirs of the boreal region. *Global Biogeochem. Cycles* 9: 529–540.
- Duchemin É., Lucotte M., Canuel R., Queiroz A.G., Almeida D.C., Pereira H.C. & Dezincourt J. 2000. Comparison of greenhouse gas emissions from an old tropical reservoir with those from other reservoirs worldwide. *Verh. Internat. Verein. Limnol.* 27: 1391–1395.
- Environment Canada. 1998. *1996 in review. An assessment* of new research developments relevant to the science of climate change. CO₂/Clim. Report 98-1. Environment Canada, Downsview, Ontario.
- Forsberg C. & Ryding S.-O. 1980. Eutrophication parameters and trophic state indices in 30 Swedish waste-receiving lakes. Arch. Hydrobiol. 89: 189–207.
- Frenzel P., Thebrath B. & Conrad R. 1990. Oxidation of methane in the oxic surface layer of a deep lake sediment (Lake Constance). *FEMS Microbiol. Ecol.* 73: 149–158.
- Håkanson L. & Jansson M. 1983. Principles of lake sedimentology, Springer, Berlin.
- Hellsten S. & Väisänen T.S. 1998. Studies of the physicochemical conditions at the sediment–water interface in Lokka and Porttipahta reservoirs. *Int. Rev. Hydrobiol.* 83: 215–218.
- Hellsten S., Virtanen M., Nenonen O., Kinnunen K. & Riihimäki J. 1993. Relative importance of internal sources of phosphorus and organic matter in northern Finnish reservoirs. *Water Sci. Technol.* 28: 85–94.
- Huttunen J.T., Hammar T., Alm J., Silvola J. & Martikainen P.J. 2001a. Greenhouse gases in non-oxygenated and artificially oxygenated eutrophied lakes during winter stratification. J. Environ. Qual. 30: 387–394.

Huttunen J.T., Hammar T., Manninen P., Servomaa K. &

Martikainen P.J. 2004. Potential springtime greenhouse gas emissions from a small southern boreal lake (Keihäsjärvi, Finland). *Boreal Env. Res.* 9: 421–428.

- Huttunen J.T., Lappalainen K.M., Saarijärvi E., Väisänen T. & Martikainen P.J. 2001b. A novel sediment gas sampler and a subsurface gas collector used for measurement of the ebullition of methane and carbon dioxide from a eutrophied lake. *Sci. Total Environ.* 266: 153–158.
- Huttunen J.T., Alm J., Liikanen A., Juutinen S., Larmola T., Hammar T., Silvola J. & Martikainen P.J. 2003. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. *Chemosphere* 52: 609–621.
- Huttunen J.T., Väisänen T.S., Hellsten S.K., Heikkinen M., Nykänen H., Jungner H., Niskanen A., Virtanen M.O., Lindqvist O.V., Nenonen O.S. & Martikainen P.J. 2002. Fluxes of CH₄, CO₂, and N₂O in hydroelectric reservoirs Lokka and Porttipahta in the northern boreal zone in Finland. *Global Biogeochem. Cycles* 16: doi:10.1029/ 2000B001316.
- Joyce J. & Jewell P.W. 2003. Physical controls on methane ebullition from reservoirs and lakes. *Environ. Eng. Geosci.* 9: 167–178.
- Kelly C.A. & Chynoweth D.P. 1981. The contributions of temperature and of the input of organic matter to controlling rates of sediment methanogenesis. *Limnol. Oceanogr.* 26: 891–897.
- Khalil M.A.K. & Rasmussen R.J. 1983. Sources, sinks and seasonal cycles of atmospheric methane. J. Geophys. Res. 88: 5131–5144.
- Kiene R.P. 1991. Production and consumption of methane in aquatic systems. In: Rogers J.E. & Whitman W.B. (eds.), *Microbial production and consumption of greenhouse* gases: methane, nitrogen oxides, and halomethanes, American Society for Microbiology, Washington, D.C., pp. 111–146.
- Kuivila K.M., Murray J.W., Devol A.H., Lidstrom M.E. & Reimers C.E. 1988. Methane cycling in the sediments of Lake Washington. *Limnol. Oceanogr.* 33: 571–581.
- Lepistö L. 1999. Phytoplankton assemblages reflecting the ecological status of lakes in Finland. *Monogr. Boreal Env. Res.* 16: 1–43.
- Liikanen A., Huttunen J.T., Valli K. & Martikainen P.J. 2002. Methane cycling in the sediment and water column of mid-boreal hyper-eutrophic Lake Kevätön, Finland. *Arch. Hydrobiol.* 154: 585–603.
- Liikanen A., Huttunen J.T., Murtoniemi T., Tanskanen H., Väisänen T., Silvola J., Alm J. & Martikainen P.J. 2003. Spatial and seasonal variation in greenhouse gas and nutrient dynamics and their interactions in the sediments of a boreal eutrophic lake. *Biogeochemistry* 65: 83–103.
- Michmerhuizen C.M., Striegl R.G. & McDonald M.E. 1996. Potential methane emissions from north-temperate lakes following spring ice melt. *Limnol. Oceanogr.* 41: 985– 991.
- Pekkarinen M. 1990. Comprehensive survey of the hypertrophic Lake Tuusulanjärvi: nutrient loading, water quality and prospects of restoration. Aqua Fennica 20: 13–25.
- Puro A., Väisänen T., Juntura E., Hätälä E., Hiltunen E. & Halo-

nen M. 1999. *Ranuanjärven, Takajärven ja Luiminkajärven tila ja kunnostusmahdollisuudet*. Alueelliset ympäristöjulkaisut 88. Lapin ympäristökeskus. Lapin yliopistopaino, Rovaniemi.

- Raatikainen M. & Kuusisto E. 1990. Suomen järvien lukumäärä ja pinta-ala. *Terra* 102(2): 97–110.
- Rolletschek H. 1997. Temporal and spatial variations in methane cycling in Lake Müggelsee. Arch. Hydrobiol. 140: 195–206.
- Saarijärvi E. & Lappalainen K.M. 2001. Flotation-like gas ebullition as a mechanism for sediment resuspension. *Verh. Internat. Verein. Limnol.* 27: 4093–4096.
- Soumis N., Duchemin É., Canuel R. & Lucotte M. 2004. Greehouse gas emissions from reservoirs of the western

United States. *Global Biogeochem. Cycles* 18: GB3022, doi:10.1029/2003GB002197.

- St. Louis V.L., Kelly C.A., Duchemin É., Rudd J.W.M. & Rosenberg D.M. 2000. Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. *Bioscience* 50: 766–775.
- Striegl R.G. & Michmerhuizen C.M. 1998. Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes. *Limnol. Oceanogr.* 43: 1519–1529.
- Sweerts J.-P.R.A. 1990. Oxygen consumption processes, mineralization and nitrogen cycling at the sediment-water interface of north temperate lakes, Ph.D. thesis, Rijksuniversitet, Groningen.