Transuranic elements in fishes compared to 137Cs in certain lakes in Finland

Tarja K. Ikäheimonen and Ritva Saxén

STUK, Radiation and Nuclear Safety Authority, P.O. Box 14, FIN-00881 Helsinki, Finland

Ikäheimonen, T. K. & Saxén, R. 2002. Transuranic elements in fishes compared to 137Cs in certain lakes in Finland. Boreal Env. Res. 7: 99–104. ISSN 1239-6095

Transuranic elements from Chernobyl fallout were detected in freshwater fish sampled in Finland after the accident. Maximum concentrations of 239,240Pu, 241Pu, 241Am and 242Cm were 3.3, 110, 2.6 and 340 mBq kg$^{-1}$, respectively. In certain samples, 238Pu/239,240Pu ratios were between 1.0 and 7.2 while the expected value was 0.5. This could indicate differences in environmental mobilization between 238Pu and 239,240Pu. The concentration factor (CF) for Am from water to fish flesh, 230, was more than 2 times higher than the figure of 84 for Pu. The CF for Cm, 5100, was considerably higher than that of Am and does not confirm the presence of similar biological behaviour for Am and Cm. The average transfer factor (TF) from deposition to fish was highest for 137Cs, 44×10^{-3} m2 kg$^{-1}$. This was somewhat higher than the TF for Am but more than 10 times higher than that for Pu. Transuranic depositions that could cause the European Council regulation limit in freshwater fish to be exceeded are, Pu and Am respectively, 3000 and 1500 times higher than the highest fallout of Pu and Am recorded in Finland following the Chernobyl accident.

Introduction

137Cs was the most important nuclide for radiation doses during the long period of radioactive fallout originating from the Chernobyl accident. In Finland the fallout also consisted of transuranic elements, albeit, in much smaller amounts than 137Cs. Deposition of these nuclides was very unevenly distributed (Arvela et al. 1992, Paatero 2000). Rain showers washed most radiocaesium into soil and watersheds in central Finland, while deposition in eastern and northern Finland was low. Most transuranic elements were deposited with associated particles. Dry deposition also occurred. The deposition of transuranics was correlated with that for other nonvolatile nuclides, e.g. 95Zr, but not with 137Cs. The highest 239,240Pu deposition found in northeastern Finland was about 8 Bq m$^{-2}$ (Paatero 2000). The ratios of transuranics released from Chernobyl were about 0.55 for 238Pu/239,240Pu, 82 for 241Pu/239,240Pu, 12 for 242Cm/239,240Pu and 0.4 for 241Am/239,240Pu (USSR 1986). However, in deposition samples and other samples representing the deposition these ratios varied widely in Finland (Saxén et al. 1987, Reponen et al. 1993, Paatero 2000).
Uneven deposition and environmental factors cause large variation in 137Cs contents in fishes from various lakes. Therefore, freshwater fishes were analysed after the Chernobyl accident with a rather extended sampling programme for 137Cs (Saxén et al. 2000). Some of the programme samples were also taken for analyses of transuranic radionuclides (Fig. 1). The aim of the present study was to determine if any transuranic elements originating from the Chernobyl fallout could be seen in freshwater fishes from Finland within a period of 2.5 y after deposition. Little information is available on behaviour of transuranic elements in freshwater fishes. The study was focused on lake Päijänne where lake water samples were also analysed. The transfer factors (TFs) for transuranic elements from the lake water and deposition into the fish were calculated and compared with the TFs for 137Cs in the southern lake Päijänne area.

Materials and methods

Transuranic elements and 137Cs were analysed in 19 fish flesh, 9 liver and 5 spawn samples. The species studied were perch (*Perca fluviatilis*), pike (*Esox lucius*), whitefish (*Coregonus lavaretus*), vendace (*Coregonus sp.*) and burbot (*Lota lota*). Water samples from lake Päijänne were also analysed. Samples were taken between August 1986 and November 1988.

Fish were cleaned and gutted. Large fish were filleted and their heads, viscera, scales or skin, fins, backbone and other large bones were removed. Only the heads and viscera were removed from perch, vendace, roach and other small fish, thus only edible parts were taken for analysis. Fish liver and spawn samples were pooled from several individuals in each sample. The cleaned flesh samples were cut into small pieces for 137Cs determination and packed into 560-ml Marinelli beakers. If only a small amount of tissue was available, a smaller 30-ml container was used. Some liver and spawn samples were partly analysed while fresh and some after drying and homogenization. Most tissue samples, however, were analysed in the smaller containers after ashing of the dried samples at 450 °C. Water samples (20 l) were concentrated by evaporation to about 500 ml and analysed for 137Cs in Marinelli beakers.

Gammaspectrometric analysis was performed using either lithium-drifted or high-purity detectors with relative efficiencies ranging between 15% and 39%. The activity concentrations of the samples were calculated using the computer program GAMMA-83 (Sinkko 1981, Sinkko and Aaltonen 1985). The measurement time was usually 2–3 h.

For transuranic analysis the cleaned fish flesh, liver and spawn samples were dried overnight at 105 °C. Homogenized dried samples were wet-ashed with strong nitric acid and a mixture of nitric and hydrochloric acids. Tracers of 242Pu and 241Am were added before wet ashing. The fresh weights of the flesh samples were about 250 g, while those of liver and spawn samples were between 20 and 60 g. Pu separation from samples was based on anion exchange and changes in the oxidation states of Pu. After separation pure Pu was electrodeposited onto a stain-
less-steel disc and measured with alphaspectrometry by either silicon surface barrier semiconductor detectors or no-background PIPS detectors. (Taipale and Tuomainen 1985). Beta-emitting 241Pu was measured with the ingrowth of its daughter nuclide 241Am in the same disc after 12–13 y (Ikäheimonen 2000).

Am and Cm were purified together from a separated fraction coming from Pu analysis. After coprecipitation with oxalate, extraction with HDEHP was performed. The sample solutions were then passed through several ion-exchange columns. After electrodeposition, Am and Cm were measured with alphaspectrometry. Due to their chemical similarity, 243Am could be used to determine the yield of both elements, this was verified experimentally. The lake water samples (100–200 l) were analysed using a similar procedure, except that preconcentration with ferric hydroxide was used instead of wetashing. The detailed method has been published separately (Taipale and Tuomainen 1985).

Results

Variations in the concentrations of 239,240Pu, 241Pu, 241Am, 242Cm and 137Cs in fish flesh, liver and spawn samples are presented in Table 1. The detection limit for 239,240Pu, 241Am and 242Cm was 0.6 mBq kg–1 for fish flesh and 3 mBq kg–1 for liver and spawn samples. For 241Pu the limits were 20 and 200 mBq kg–1, respectively. The highest concentrations of transuranic elements in fish flesh were found in lakes Päijänne and Oulujärvi, while liver concentrations were highest in Pääjärvi and Pyhäjärvi and those of spawn in lakes Lentua and Keitele (Fig. 1). In lake Saimaa, all concentrations were below the detection limits. No clear differences were found between fish species.

238Pu could also be detected in 4 flesh and 3 liver samples; 238Pu/239,240Pu was between 1.0 and 7.2 in these samples, being highest in the liver. Uncertainties for these ratios varied 10%–25%.

The average 241Am/239,240Pu ratios in fish flesh and liver were 1.6 and 12, respectively. In 5 of the samples only 241Am could be detected. 242Cm was found in fish flesh in 1986 and in early 1987. The liver and spawn samples were analysed later, when 242Cm was no longer detectable. 137Cs in fish flesh from lake Päijänne varied widely. 137Cs in the spawn from lake Päijänne varied from 230 to 1720 Bq kg–1, showing an average of 790 Bq kg–1 in vendace and 850 Bq kg–1 in whitefish.

Concentrations of 239,240Pu, 241Pu and 241Am in water of lake Päijänne were 13, 800 and 8 mBq m–3 during the summers of 1986 and 1987, respectively. The concentration of 242Cm was measured once in late summer 1986, and when corrected for decay to May 1986 it was 18 mBq m–3. In addition, variation in 137Cs concentrations between Finnish lakes has been reported in detail elsewhere (Saxén and Rantavaara 1987, Saxén and Rantavaara 1990, Saxén et al. 2000).

Variation in and average values for the concentration factor (CF) from lake water to fish flesh, liver and spawn in lake Päijänne are presented in Table 2. Lake water concentrations were corrected to the sampling dates of fish before calculations. The calculated values for 239,240Pu and 241Pu were in good agreement with each other and are presented together, representing a CF value for Pu. The mean CF value for Pu was 84. The CF for Am was more than 2

Table 1. Variations in the activity concentrations of 239,240Pu, 241Pu, 241Am, 242Cm and 137Cs in fish flesh, liver and spawn samples in Finnish lakes (m Bq kg–1 f.w., for lakes see Fig. 1). Concentrations were corrected to the sampling dates (28 August 1986–1 November 1988).

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Fish flesh</th>
<th>Fish liver</th>
<th>Fish spawn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pu-239,240</td>
<td><0.6–3.3</td>
<td><3–6.9</td>
<td><3</td>
</tr>
<tr>
<td>Pu-241</td>
<td><20–110</td>
<td><200–780</td>
<td><200–400</td>
</tr>
<tr>
<td>Am-241</td>
<td><0.6–2.6</td>
<td>8.7–140</td>
<td>5.4–29</td>
</tr>
<tr>
<td>Cm-242</td>
<td><0.6–340</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cs-137</td>
<td>(190–3300) × 10³</td>
<td>–</td>
<td>(230–1720) × 10³</td>
</tr>
</tbody>
</table>
times higher than that for Pu, when the mean was 230. A surprisingly high value of CF was calculated for 242Cm, showing an average of 5100. The concentration of 242Cm in lake water was first corrected to the fish sampling dates. The CFs for 137Cs varied and were dependent on the fish species. The highest value was found in pike.

The TFs from deposition to fish flesh were calculated for Pu, Am and 137Cs (Table 3). The deposition values used for calculations were for 137Cs from Arvela et al. (1992) and for Pu and Am from Paatero (2000). The highest TF was for 137Cs, showing an average of 44×10^{-3} m2 kg$^{-1}$. This was somewhat higher than the mean TF for Am, but more than 10 times higher than that for Pu.

Discussion

No reference values exist for Pu concentrations in Finnish freshwater fishes before the Chernobyl accident, but a value of 0.6 MBq kg$^{-1}$ was thought to indicate the presence of Chernobyl fallout. This estimation is based on concentrations found in Baltic Sea fishes from earlier studies (Kanisch et al. 1995, Rissanen and Ikäheimonen 2000). The presence of the fresh fallout nuclide 242Cm and the high ratio of 241Pu/239,240Pu were clear signs of transuranics originating from Chernobyl. These signs of Chernobyl fallout were detected in 11 fish flesh, 6 liver and 1 spawn samples.

The expected value for 238Pu/239,240Pu in fish was approximately 0.5, while it varied 1.0–7.2 when detected. One reason could be the considerable variation in ratio of the nuclides in fresh fallout although the mean was about 0.5 (Saxén et al. 1987, Paatero 2000). A small part of the 238Pu could be ingrown from short-lived 242Cm, but this alone cannot explain the high ratios. The results could indicate differing environmental mobilization for 238Pu compared with 239,240Pu. Some other authors have also recognized greater biological uptake of 238Pu over 239,240Pu (Fresquez et al. 1999, Hokanson and Johnson 1973, Suchanek et al. 1996, Booher et al. 1998, NCRP 2001).

The ratio of 241Am/239,240Pu in fish flesh and liver (1.6 and 1.2, respectively) was considerably higher than that in lake water, 0.6. This indicates a higher accumulation of Am from water to fish. The higher bioavailability of Am over Pu in the environment has been detected in several studies (Hetherington et al. 1976, Wahlgren et al. 1976, Raabe 1980, Suchanek et al. 1996, Paatero 2000).

The large variation in 137Cs contents in fish is

Table 2. Variations and averages of concentration factors (CF*) from lake water (lake Päijänne) to fish flesh, liver and spawn calculated to the sampling dates of fishes.

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>CF for fish flesh (aver.)</th>
<th>CF for fish liver</th>
<th>CF for fish spawn (aver.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pu-239,240 and Pu-241</td>
<td>< 45–250 (84)</td>
<td>< 200</td>
<td>< 200 (–)</td>
</tr>
<tr>
<td>Am-241</td>
<td>< 85–370 (230)</td>
<td>–</td>
<td>1400 (–)</td>
</tr>
<tr>
<td>Cm-242</td>
<td>2100–9800 (5100)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cs-137</td>
<td>250–5800 (2600)</td>
<td>110–820 (390)</td>
<td>–</td>
</tr>
</tbody>
</table>

* $\text{CF} = \frac{\text{Activity concentration of a radionuclide in fresh fish (Bq kg}^{-1}\text{)}}{\text{Activity concentration in lake water (Bq kg}^{-1}\text{)}}$

Table 3. Variations and averages of transfer factors (TF*) from deposition to fish flesh (lake Päijänne).

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>TF m2 kg$^{-1}$</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pu-239,240 and Pu-241</td>
<td>(< 2.4–13) $\times 10^{-3}$</td>
<td>3.0 $\times 10^{-3}$</td>
</tr>
<tr>
<td>Am-241</td>
<td>(< 6–26) $\times 10^{-3}$</td>
<td>18 $\times 10^{-3}$</td>
</tr>
<tr>
<td>Cs-137</td>
<td>(6.9–160) $\times 10^{-3}$</td>
<td>44 $\times 10^{-3}$</td>
</tr>
</tbody>
</table>

* $\text{TF} = \frac{\text{Activity concentration of a radionuclide in fresh fish (Bq kg}^{-1}\text{)}}{\text{Average deposition (Bq m}^{-2}\text{)}}$
due to the uneven deposition of 137Cs in the lake area. After deposition, contamination of fishes with different feeding habits occurs at different times. Nonpredatory fishes are contaminated most rapidly after deposition, while 137Cs in predatory fishes reaches the highest levels 1–2 y after deposition in various lakes (Saxén et al. 1997).

In the southern part of lake Päijänne, which was one of the lakes most contaminated by Chernobyl deposition, the concentration of 137Cs in the water had declined to 300 Bq m$^{-3}$ in June 1988 compared with a value in August 1986 of 1700 Bq m$^{-3}$ (Saxén and Aaltonen 1987). 137Cs levels in water of this lake decreased after the Chernobyl accident in 1986 with a half-life of 50 days. For about the next 2 y 137Cs decreased with a half-life of one year thereafter the decrease was still slower (Saxén et al. 1997).

The 242Cm concentration in the lake water of Päijänne was surprisingly low compared with the deposited amounts. One reason may be differences in the behaviour of Pu and Cm in the freshwater system during the short period following deposition.

The CF value for Pu, 84, was in good agreement with earlier studies. Eyman and Trabalka (1980) estimated values of between 5 and 250 for both marine and freshwater fish, with highest values for bottom feeders. The NCRP (2001) reports values of 5–300 for freshwater fishes.

The greater CF for Am over Pu is due to the greater bioavailability of Am compared with that for Pu. The chemical and biological behaviour of Am and Cm has generally been assumed to be similar. However, in the present study the CFs for Am and Cm differed greatly from each other. The correction for 242Cm water concentration applied to the sampling dates of fish samples could have introduced some error for the calculated values if the 242Cm concentration in lake water was not constant. However, there is still a marked difference between the calculated CFs for Am and Cm. A lack of previous environmental data is apparent for calculation of CFs for transplutonium elements, especially for Cm of freshwater fish. Eyman and Trabalka (1980) reported estimated CF values for Am, Cm and Np of between 50 and 2500, i.e. 10 times higher than that for Pu. In the present study the data were very limited and additional studies are needed to verify the possible differences in biological behaviour of Am and Cm indicated by these results.

Transfer of deposited 137Cs to fishes in lakes is affected by many factors and varies with time after deposition. One of the most important factors is nutrient level of lake water, transfer being inversely proportional to the nutrient level of water (Kolehmainen et al. 1966).

In the event of future accidents, the limit proposed by the EU for Pu and transplutonium elements in foods other than milk or liquid foods is 80 Bq kg$^{-1}$ (EURATOM 1989). Pu and Am depositions that could cause the limit to be exceeded in fish were estimated to be 27 000 Bq m$^{-2}$ and 4500 Bq m$^{-2}$, respectively, the estimation is based on the TFs for Pu and Am. These values for Pu and Am are, respectively, 3000 times and 1500 times higher than the highest fallout of Pu and Am recorded in Finland following the Chernobyl accident (Paatero 2000).

References

Received 30 August 2001, accepted 10 March 2002