Prolongation of soil frost resulting from reduced snow cover increases nitrous oxide emissions from boreal forest soil

Marja Maljanen¹*, Jukka Alm², Pertti J. Martikainen¹ and Tapani Repo²

¹) University of Kuopio, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland (*corresponding author’s email: marja.maljanen@uku.fi)
²) Finnish Forest Research Institute, Joensuu Research Centre, P.O. Box 68, FI-80101 Joensuu, Finland

Received 18 Oct. 2008, accepted 18 June 2009 (Editor in charge of this article: Jaana Bäck)

Emission rates of the greenhouse gas, nitrous oxide (N₂O), from northern upland forest soils are generally low. According to recent climate scenarios, the snow cover in the boreal region is predicted to decrease and which will result in lower soil temperatures. In this study, we investigated whether lower soil temperatures during winter can also trigger N₂O emissions from boreal forest soils with originally low N₂O emissions, as has earlier been shown for northern agricultural soils with higher N₂O emissions. We measured the N₂O emissions from a spruce forest in eastern Finland where the soil temperature was changed by manipulating snow-pack thickness and using insulating covers. The effects of the treatments on methane (CH₄) and carbon dioxide (CO₂) fluxes were also studied for comparative purposes. The results show that there can be an increase in N₂O emissions and CO₂ production rate from boreal upland forest soils resulting from a thinner snow cover that causes a prolongation of soil frost. Reducing the snow pack thickness had only minor effects on the CH₄ fluxes.

Introduction

Nitrous oxide (N₂O) is 298 and methane (CH₄) 25 times stronger a greenhouse gas than carbon dioxide (CO₂) with a 100-yr time horizon (Solomon et al. 2007). N₂O is produced in soil mainly through nitrification and denitrification processes and its production rate is controlled by several factors, such as the availability of oxygen, mineral nitrogen and microbial carbon substrates, and temperature and soil moisture (Davidson 1991). N₂O emission rates from N-limited boreal upland forest soils are generally low as compared with those from e.g. temperate and tropical forest soils or boreal agricultural soils (Klemedtsson et al. 1997, Simpson et al. 1997, Syväsalo et al. 2004, Brumme et al. 2005, Pilegaard et al. 2006).

According to several studies, a large amount of N₂O can be produced and emitted from soils at low temperatures, even below 0 °C (Holtan-Hartwig et al. 2002, Öquist et al. 2004, Koponen et al. 2004, Groffman et al. 2006, Maljanen et al. 2007). Emissions of N₂O during winter may account for more than one half of the annual emissions in boreal and temperate regions (e.g. Röver et al. 1998, Teepe et al. 2000, Schürmann et al. 2002). However, the reasons for the high N₂O emissions during winter and the production of N₂O in frozen soils are not well under-
stood. Studies on \(\text{N}_2\text{O} \) emissions from boreal forests, especially during cold periods, are lacking despite the fact that these forests cover extensive areas in the northern hemisphere (23.48 \(\times 10^6 \) km\(^2\); Brumme et al. 2005).

\(\text{CH}_4 \) is produced in soils by anaerobic methanogenic microbes and consumed by aerobic methanotrophic bacteria (Le Mer and Roger 2001). Well-drained forest soils are globally important sinks for atmospheric \(\text{CH}_4 \), since the sink strength (about 30 Tg CH\(_4\)) is similar to the annual increase (22 Tg CH\(_4\)) in atmospheric \(\text{CH}_4 \) (Le Mer and Roger 2001, Solomon et al. 2007). Northern ecosystems, including forests, have been considered as sinks of atmospheric \(\text{CO}_2 \). The sink strength, however, is sensible to global warming (Piao et al. 2008). Furthermore, the fate of soil carbon plays a key role in the carbon balance of forest ecosystems.

Snow insulates the soil during winter, therefore a reduced snow cover enhances soil freezing, lengthens the freezing period, and results in soil freezing to greater depths (Schürmann et al. 2002, Groffman et al. 2006). According to recent climate scenarios, the snow cover in the boreal region is expected to decrease (Solomon et al. 2007), thereby resulting in lower soil temperatures. Our hypothesis is that a reduction in the thickness of the snow cover which causes deeper and prolonged frost would increase \(\text{N}_2\text{O} \) emissions from boreal upland forest soil, and also change the soil \(\text{CH}_4 \) and \(\text{CO}_2 \) dynamics. The release of \(\text{CO}_2 \) from the soil could decrease as a result of lower soil temperatures, and \(\text{CH}_4 \) uptake could either increase because of the decreasing diffusion barrier (snow cover) or decrease due to the lower soil temperatures.

Material and methods

Site description and soil temperature manipulations

The study was carried out in a 49-year-old Norway spruce forest (Picea abies) located in the boreal coniferous zone near the city of Joensuu, eastern Finland (62°36´N, 29°43´E, 84 m a.s.l.). The long term mean annual temperature is 2.6 °C and the long-term annual precipitation 609 mm, of which approximately one half falls as snow (Drebs et al. 2002). The average height of the tree stand was 17 m. The stand density was 864 trees ha\(^{-1}\), stand volume 211 m\(^3\) ha\(^{-1}\) and the basal area 25.4 m\(^2\) ha\(^{-1}\). The soil is glacial till and the pedological soil type ferric podzol. The organic matter (OM) content in the organic horizon was 70.8% and in the uppermost mineral soil layer (3–10 cm) 9.0%. The carbon to nitrogen (C/N) ratio in the organic horizon and in the uppermost mineral soil was 22.4 and 15.9, respectively. Soil pH (\(\text{H}_2\text{O} \)) in the organic horizon was 4.2 and in the mineral soil 4.4. The snow manipulation experiment was established in 2005 with three different treatments, and three replicate plots for each treatment. The snow manipulations were carried out in winters 2005/2006 and 2006/2007. The treatments were: (1) control (C), where the snow was allowed to accumulate and melt naturally, (2) open (O), where the snow was removed during winter in order to allow frost to pass deeper into the soil, and (3) frost (F), where the snow was removed during winter as in the O treatment, and the ground surface then insulated from the end of March to 4 July in order to continue the soil frost period. The insulation cover consisted of two plastic sheets with 15 cm of hay in-between. Each plot was 12 × 12 m.

Gas flux measurements

Fluxes of \(\text{N}_2\text{O} \), \(\text{CH}_4 \) and \(\text{CO}_2 \) were measured simultaneously using a static dark-chamber method. Two types of chambers were employed. The first type consisted of a galvanized steel cylinder (diameter 30 cm, height 30 cm) with a gas-tight plastic lid with two holes closed with 25 mm rubber septa. The holes were opened and the sharp, lower edge of the chamber was twisted into the soil. This type of chamber was used only in March 2007. The second type of chamber was a similar steel cylinder with two 27 mm rubber septa in holes through the fixed steel cover. The septa were kept open when the chamber was placed on the soil, and were carefully closed at the start of the measurements. The chamber was air-tightly sealed to the ground with a rubber gasket attached to the lower edge of the cylinder, and a tight seal was ensured by placing a ca.
1 kg weight on top of the chamber. The air in the chamber headspace was mixed using a battery-operated fan fixed on the inside of the chamber top. When the gas fluxes were measured on the F plots the insulation cover was removed during the sampling period of 30 min. Before the covers were removed, five gas samples were taken below the cover at each sampling time in order to check that there was an accumulation of gases. Gas samples (40 ml) were drawn from the headspace of the chambers with 50 ml polypropylene syringes (Terumo) equipped with a three-way stopcock (Connecta) 5, 10, 20, and 25 minutes after the chambers had been closed. In January 2008, the samples were taken after 15, 30, 45, and 60 min. In 2007 the gas samples were injected into pre-evacuated 12 ml Labco Excetainers® and analyzed with a gas chromatograph (Agilent 6890N) equipped with a GILSON auto sampler, flame ionization (FI) and electron capture (EC) detectors, and the flux rates were calculated from the linear change in the gas concentrations. Compressed air (Linde AG, Germany) containing 1.98 ppm CH₄, 396 ppm CO₂ and 0.389 ppm N₂O was used for cali-bration. The CO₂ flux measured in situ, termed here as CO₂ production, is the CO₂ flux from the respiration of soil microbes and fauna, the dark respiration of plants, and root respiration. The negative CH₄ flux from the soil to the atmosphere is termed here as CH₄ uptake.

The chamber measurements on two replicate subplots with three replicate chambers, including C, O, and F treatments, were performed nine times in 2007, the second year of the snow manipulation, between March and October and once in January 2008. Gas fluxes from the control plots in March 2007 and from all the plots in March and April 2008 were determined by measuring the gas concentration gradients from the snow, and by calculating the associated diffusion rates in the snow (Sommerfeld et al. 1993, Maljanen et al. 2003). Gas samples (40 ml) were drawn from the snowpack using a stainless steel probe (Ø 3 mm, length 50 cm). For calculating the diffusive fluxes, an ambient gas sample was taken above the snow pack and another sample inside the snow pack 2 cm above the soil surface. Additional gas samples were taken in the snow pack in order to check the linearity of the gas gra-dient. Snow samples were collected simultaneously with a PVC tube (Ø 10.2 cm) for porosity measurements. The intact samples were weighed and the average porosity of the snow calculated using the density of pure ice (0.9168 g cm⁻³).

Gas samples taken in 2008 were analysed on a Shimadzu 14A GC equipped with FI, EC, and thermal conductivity (TC) detectors for CH₄, N₂O, and CO₂, respectively. The compressed air standard used with the Shimadzu gas chromatograph contained 1.81 ppm CH₄, 382 ppm CO₂, and 0.320 ppm N₂O, and the gas fluxes were calculated as described earlier.

Environmental variables

The air and soil temperature and volumetric water content of the soil were logged at 30 min intervals (CR10X-2M datalogger with AM 16/32 multiplexer, Campbell Scientific, Shepshed, UK). The temperature of the air (at a height of 2 m) and the soil (at depths of 5, 15 and 50 cm) were measured with Pt-100 thermistors and the soil moisture content by TDR (CS616, Campbell Scientific) at a depth of 15 cm.

Soil samples for the determination of NO₃⁻, NO₂⁻ and NH₄⁺ were collected from the organic horizon (0–3 cm) and from the uppermost mineral soil layer (3–10 cm depth) in June and in October 2007. NO₃⁻ was extracted from the soil with H₂O, and NH₄⁺ with 1M KCl solution. NO₃⁻ and NO₂⁻ were analyzed by ion chromatography (Dionex DX-120) and NH₄⁺ by spectrophotometry (Fawcett and Scott 1960).

Statistical analysis

Analysis of variance was used for investigating the soil parameters and in order to overcome the problems caused by the hierarchical structure of the data, e.g. measurements repeated in the same study plots, a Linear Mixed Model (SPSS 14.0) test was applied for the gas flux data in order to test the differences between the treatments. The study plots were set as random factors. The N₂O fluxes were log-transformed to normalize the distributions. Spearman non-parametric rank correlation was used to study the relationships
between the gas fluxes and the environmental variables (SPSS 14.0).

Results

Soil physical and chemical properties

The treatments had an effect on soil moisture and soil temperature (Fig. 1). Thawing started in the C and O treatments in the beginning of May, while in the F treatment the soil temperature at 15 cm depth remained close to 0 °C until the end of June (Fig. 1). The mean soil temperature during the 202-day period (from spring to autumn) was the highest in the C treatment and the lowest in the F treatment (Table 1). Soil moisture in the C and B treatments was the high-
est after snow melt in early May, whereas in the F treatment it reached a peak in the middle of June (Fig. 1). However, the C and F treatments had similar mean soil moisture contents, both lower than that in the O treatment (Table 1).

During the winter following the snow manipulations, there was still a statistical difference \((p < 0.001)\) in the soil temperature between the treatments. Soil temperature at the depth of 15 cm in the F treatment (mean \(-0.36 \, ^\circ\text{C}\)) differed from that in the O \((-0.31 \, ^\circ\text{C}\)) and C treatments \((-0.25 \, ^\circ\text{C}\)) between 9 January and 4 April 2008. Also the soil moisture content was the highest \((p < 0.001)\) in the C treatment (mean 14.4\%), lower in the F treatment (10.9\%) and the lowest in the O treatment (9.70\%).

In June 2007, the \(\text{NO}_3^-\) concentrations were the lowest in the C and O treatments (< 0.07 \(\mu g \, g^{-1}\)), but significantly higher in the F treatment (0.28 \(\mu g \, g^{-1}\) and 0.21 \(\mu g \, g^{-1}\) for the humus and mineral soil, respectively) (Table 1). In October, the \(\text{NO}_3^-\) concentration was low in all the treatments. \(\text{NO}_2^-\) was not detected in any of the samples. The \(\text{NH}_4^+\) concentrations in the organic horizon were lower in the C (< 2.5 \(\mu g \, g^{-1}\)) than in the O or F treatments, and there was no significant difference between the sampling times. In the mineral soil, the \(\text{NH}_4^+\) concentrations were higher in June than in October in all the treatments.

Gas dynamics

In March 2007, the control soil had a negative \(\text{N}_2\text{O}\) flux indicating uptake of this gas, whereas \(\text{N}_2\text{O}\) was emitted from the O and F treatments. From April to late June (insulation on the F plots) \(\text{N}_2\text{O}\) was emitted from the control and treatments. During this period, the \(\text{N}_2\text{O}\) emissions from the F treatment were significantly \((p < 0.001)\) higher than those from the control. From August to October, the mean \(\text{N}_2\text{O}\) emissions were similar in all treatments (Fig. 1). The \(\text{N}_2\text{O}\) emissions correlated negatively with soil temperature, i.e. the emissions increased with decreasing temperature (Table 2 and Fig. 2). The highest \(\text{N}_2\text{O}\) emissions occurred when the soil temperature at the depth of 5 cm was close to 0 \(\text{C}\). There was no correlation between soil moisture content and the \(\text{N}_2\text{O}\) fluxes (Table 2).

In March 2007, the soil \(\text{CO}_2\) production was low in all the treatments. In late June (end of the insulation period), the \(\text{CO}_2\) production rate in the F treatment was three-fold that in the other treatments, even though the soil temperature (depth 5 cm) in the F treatment remained close to 0 \(\text{C}\). However, there was no significant difference in the \(\text{CO}_2\) production rates between the treatments during the whole insulation period. From August to October the \(\text{CO}_2\) production rates were close to those in the early spring, and at a similar rate

<table>
<thead>
<tr>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.13</td>
<td>1.6</td>
<td>201</td>
<td></td>
<td>0.002</td>
<td>0.000</td>
<td>3.1</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>C_H</td>
<td>0.002</td>
<td>0.000</td>
<td>3.1</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_M</td>
<td>0.004</td>
<td>0.008</td>
<td>0.91</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>0.27</td>
<td>1.1</td>
<td>134</td>
<td></td>
<td>0.002</td>
<td>0.000</td>
<td>5.2</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>O_H</td>
<td>0.002</td>
<td>0.000</td>
<td>5.2</td>
<td>5.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_M</td>
<td>0.007</td>
<td>0.008</td>
<td>0.82</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0.31</td>
<td>2.2</td>
<td>313</td>
<td></td>
<td>0.28</td>
<td>0.00</td>
<td>4.6</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>F_H</td>
<td>0.28</td>
<td>0.00</td>
<td>4.6</td>
<td>4.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_M</td>
<td>0.21</td>
<td>0.02</td>
<td>0.92</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p < 0.05, **p < 0.01 (significant difference from the control).
in all the treatments. The soil CO₂ production rate increased with increasing soil temperature in all the treatments, but it did not correlate with the soil moisture content (Table 2).

In April, the C and F treatments had low CH₄ emissions, and thereafter they were net CH₄ sinks. The O treatment was a net sink for CH₄ in March and April, but emitted CH₄ in late May (Fig. 1). From August to October, all the treatments were sinks for CH₄ and the uptake rate increased with increasing soil temperature in all the treatments, but it did not correlate with soil moisture (Table 2).

Cumulative emissions

During the 202-day period between March 15 and October 2 the cumulative N₂O emission from the C treatment was about one half that from the O and F treatments (Table 1). However, there were no statistically significant differences in the N₂O emissions between C and the other treatments. The CO₂ production rates were higher in the F than in the O treatments ($p = 0.025$), but there was no statistically significant difference between the treatments and the control. Even though there were occasionally some CH₄ emissions, all the treatments were net sinks for CH₄ over the whole study period (Table 1).

In the measurements carried out during the winter 2008, one year after the manipulations had been started, there were no differences in the gas flux rates between the treatments. In the period from January to 4 April 4, the soils were sinks for N₂O and CH₄, with mean rates of $-1.14 \mu g m^{-2} h^{-1}$ and $-0.006 mg m^{-2} h^{-1}$, respectively. A rough estimate of the annual emission of N₂O from the control site would therefore be 0.09 kg N₂O ha⁻¹. During the winter period the soil was a consumer of CH₄, and the estimated annual net emission would be $-1.9 kg CH₄ ha⁻¹$ from the control plots. The soil CO₂ flux during winter 2008 was low, on the average 37 mg m⁻² h⁻¹.

<table>
<thead>
<tr>
<th>Table 2. Spearman Rank Correlation coefficients between the mean N₂O and CH₄ fluxes, CO₂ production, and the environmental variables ($n = 27$) (*$p < 0.05$, **$p < 0.01$). The CH₄ flux is expressed as uptake (CH₄ flux from the atmosphere to the soil is positive). VM is the volumetric soil moisture content at a depth of 15 cm. Tₕ₅ cm, T₁₅ cm, and Tₕ₅₀ cm are soil temperatures at depths of 5, 15 and 50 cm, respectively.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₂O</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>CO₂</td>
</tr>
<tr>
<td>CH₄</td>
</tr>
<tr>
<td>VM</td>
</tr>
<tr>
<td>Tₕ₅ cm</td>
</tr>
<tr>
<td>T₁₅ cm</td>
</tr>
<tr>
<td>Tₕ₅₀ cm</td>
</tr>
</tbody>
</table>
Gas concentrations under the insulation cover

The CO₂ and N₂O concentrations were higher under the insulation cover applied between 28 March and 4 July (1500–5000 ppm for CO₂ and 1.1–0.4 ppm for N₂O) than the ambient concentrations (380 ppm for CO₂ and 0.32 ppm for N₂O) in April, but close to the ambient concentrations in May. The CH₄ concentrations remained close to the ambient (1.8 ppm) in all the samples.

Discussion

Upland forest soils in Finland are subjected to low N deposition and are nitrogen limited, which may explain the earlier observed low N₂O emissions. In our study, the N₂O emissions during the summer months were higher than those reported for some pine forests in Finland (Maljanen et al. 2006a, Pilegaard et al. 2006), but slightly lower than those measured in a spruce forest in Finland (Maljanen et al. 2006b). The mean N₂O emission from the control area, 2 µg N₂O m⁻² h⁻¹, was similar to that estimated by Brumme et al. (2005) for boreal forest soils, 2.2 µg N₂O m⁻² h⁻¹. However, the mean emissions from the manipulated soils (8.3 and 7.7 µg N₂O m⁻² h⁻¹) were close to the mean emission level for temperate forests, 13 µg N₂O m⁻² h⁻¹ (Brumme et al. 2005).

In our study, prolonged soil frost increased the soil NO₃⁻ concentration in winter and early summer, and also increased the N₂O emissions. Evidently, the soil in boreal spruce forests has more favourable chemical/physical properties for nitrogen mineralization and associated nitrification and denitrification than the soil in pine forests. A low soil temperature in winter further enhances the processes related to N₂O production in the soil in spruce forests. Spruce stands generally grow on more fertile sites than pine stands, which would explain this difference. Another factor is the effective extinction of light by the dense spruce canopy that results in a sparse field layer vegetation, potentially reducing nitrogen uptake by vascular plants when only the soil surface layer has thawed and the deeper tree roots are still inactive.

At the end of the insulation period the CO₂ production rate in the F treatment was high. The enhanced emissions of both N₂O and CO₂ after the insulation period could be partially related to the release of trapped gases during thawing (Goodroad and Keeney 1984, van Bochove et al. 2001), and not only to the high availability of organic C and N and increased microbial activity (e.g. Christensen and Tiedje 1990). The insulation cover could also reduce evaporation and create higher soil moisture conditions, thereby favouring denitrification which is probably the main mechanism for N₂O production in soils close to 0 °C (Mørkved et al. 2006, Öquist et al. 2007). At low soil temperatures, the N₂O production rate can be limited by NO₃⁻ availability (Mørkved et al. 2006, Öquist et al. 2007). In our study, there was NO₃⁻ production at the lowest temperature (F treatment) during the insulation period, which is consistent with the findings of earlier studies that have shown some NO₃⁻ production in soil at low temperatures (Groffman et al. 2001). The higher N availability in the F treatment could also be related to the lower N uptake by plants under the insulation cover.

The N₂O emission from the control soil during the 202-day period of was 0.13 kg ha⁻¹. After the treatment period the winter measurements in 2008 (from January 9 to April 4) showed a N₂O uptake rate similar to that in the control soil in winter 2007. The uptake of N₂O in the control soil (N₂O concentration in snow is below the ambient atmospheric concentration or decreasing N₂O concentration in chambers) is probably a result of N₂O reduction to N₂ by denitrification in the wet organic surface layer of the soil (Jassal et al. 2008). On the plots where the snow was removed, the organic layer was probably inundated with frozen water, whereas under the snow cover there was more unfrozen water in the soil thereby allowing N₂O reduction to take place. N₂O uptake in boreal forest soil during winter is opposite to the situation in boreal agricultural soils, where high N₂O emissions occur during winter (e.g. Syväsalo et al. 2004). The estimated annual N₂O emission for the control plots of 0.09 kg N₂O ha⁻¹ is lower than the mean annual value of 0.43 kg N₂O ha⁻¹ reported for boreal soils by Brumme et al. (2005), and is mainly the result of N₂O uptake during winter. Brumme et al. (2005)
assumed that boreal forest soils emit N\textsubscript{2}O during the whole winter period at a rate equivalent to 40% of the annual emissions. However, the lack of continuous flux data makes it difficult to make reliable estimates of the annual N\textsubscript{2}O emissions from northern soils. Annual emissions from the soil in the O and F treatments cannot be estimated due to the lack of winter data. However, our results show that the lower soil temperature resulting from a thinner snow cover may affect N\textsubscript{2}O fluxes and soil respiration.

The CH\textsubscript{4} uptake rate in our study was similar (e.g. Kasimir-Klemedtsson and Klemedtsson 1997, Saari et al. 1998, Brumme et al. 2005) or lower (Maljanen et al. 2006b) than that reported for other boreal forests. The snow and frost manipulation treatments did not significantly affect the CH\textsubscript{4} fluxes from the forest soil, thereby confirming the results by Groffman et al. (2006).

Conclusions

This study shows that a low temperature can induce N\textsubscript{2}O emissions from boreal upland forest soil, which generally have low N\textsubscript{2}O emissions. Global warming, which will probably reduce the duration and thickness of the snow cover, thereby causing deeper frost and prolonged low soil temperatures in early summer, could therefore increase the N\textsubscript{2}O emissions from boreal forests. Prolonged soil frost may also enhance soil respiration after thawing. In contrast to N\textsubscript{2}O, the CH\textsubscript{4} fluxes are less sensitive to a reduction in snow pack thickness and a lowering of soil temperatures.

Acknowledgements: Timo Salakka, Sirppa Härkönen and Sirpa Varttainen are thanked for their assistance in the field. This study was funded by the Academy of Finland and the Finnish Forest Research Institute (projects 3394 and 3489).

References

