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Knowledge of extreme sea levels is important when planning housing developments and 
other infrastructure in coastal locations. The natural science basis of such plans are often 
return level-return period plots derived from tide gauge records that typically stretch from 
a few decades to a century. Coastal planners, however, often require return levels associ-
ated with return periods that are much longer than these tide gauge records in their plan-
ning. Moreover, return level estimates are known to be sensitive to outliers and can have 
significant biases. Here, we quantify different confidence intervals that are applicable to 
such return level estimates, and discuss their usability for coastal planning in the context 
of historic data from the Baltic Sea flood in 1872. Two types of commonly used confidence 
intervals are found to be too narrow to capture a plausible range that includes the 1872 
Baltic Sea flood. A parametric bootstrapping method is then introduced, which gives a rea-
sonable range even when this extreme flood is considered.

Introduction

The sea level is currently rising at an accelerating 
pace, with further acceleration, increased flooding 
and more severe economic consequences to be 
expected in the future (Vousdoukas et al. 2018, 
Oppenheimer et al. 2019, Seroussi et al. 2020). 
Estimates of susceptibility to flooding are there-
fore important when planning new infrastructure 
in the coastal area, protection for existing infra-
structure or even retreat. Projections of mean sea 
level rise (Johansson et al. 2014, Hieronymus 
and Kalén 2020) and knowledge of sea level 
extremes are key ingredients when mapping such 

susceptibilities (Leijala et al. 2018, Pellikka et al. 
2018, Gordeeva and Klevannyy 2020). Sea level 
extremes used for planning purposes are often 
cast in terms of return levels with correspond-
ing return periods, while the uncertainty in such 
estimates is most often characterized by a 95% 
confidence interval. A 100 year return level has a 
1/100 probability of being exceeded in any given 
year, and is a commonly used metric that can be 
derived from tide gauge records or model experi-
ments.

However, much higher return levels than the 
100 year return level are also often requested 
for planning purposes. One example from our 
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study area is the Swedish National Board of 
Housing, Building and Planning, who in their 
"Starting points for flood risk assessment" (trans-
lation of Swedish original title: Utgångspunk-
ter för bedömning av översvämningsrisk) sug-
gest that developments of new important infra-
structure and settlements should be done with a 
10 000 year return level in mind (Boverket 2020). 
Of course, an event with a yearly probability of 
exceedance of 1/10 000 is extremely unlikely to 
feature in the observed record from any nearby 
tide gauge, given that such records are typi-
cally around 50 years long and records exceeding 
100 years are very rare. Multi-millennial runs 
with hydrodynamic models that faithfully capture 
high frequency sea level variability are similarly 
extreme rarities (Lang and Mikolajweicz 2019). 
Moreover, it has been demonstrated that return 
level estimates are sensitive to outliers. That is, 
a single yearly maximum being pulled from or 
added to a record can have large consequences 
for the estimated return levels (Dangendorf et al. 
2016, Hieronymus and Kalén 2020).

Return level estimates derived from short tide 
gauge records could thus potentially often be 
biased. Most often we would expect them to be 
low biased, since none of the most extreme events 
are likely to have occurred during the measure-
ment period. However, high biases are also pos-
sible if very extreme conditions indeed do feature 

in the record. Historic storms can sometimes offer 
clues, insofar as there is anecdotal evidence of sea 
levels reached during flooding events that pre-
date measurement stations. One prominent exam-
ple is the Baltic Sea flood in 1872, which ravaged 
the southern Baltic Sea, claiming the lives of 
271 people while leaving 15 000 homeless. This 
storm temporarily raised sea levels by over three 
meters in parts of Germany and by more than two 
meters in parts of Sweden (Feuchter et al. 2013, 
Jensen and Müller-Navarra 2008, Fredriksson et 
al. 2016, Johansson and Nerheim 2020).

Fredriksson et al. (2016) estimated multi-
millennial return periods for the 1872 Baltic Sea 
flood based on estimates of sea levels reached on 
the Falsterbo Peninsula and current tide gauge 
data. The location of Falsterbo peninsula is 
marked on the map (Fig. 1). The map also shows 
the location of Ystad, the tide gauge that we will 
use in our investigation, which also experienced 
record sea levels during the same event. The 
Ystad tide gauge is, in fact, of particular inter-
est because a sea level 1.96 m above the mean 
was recorded by the lighthouse keeper in Ystad 
lighthouse during the 1872 storm (Johansson and 
Nerheim 2020). The sea level reached during the 
1872 Baltic Sea flood was undoubtedly extreme. 
However, it having a multi-millennial return 
period appears at odds with other historical evi-
dence that suggest similar events may have taken 
place during the last millennium (Fredriksson et 
al. 2016, Johansson and Nerheim 2020). Moreo-
ver, it is not only the estimated return period that 
is extremely long for this event. The 95% confi-
dence interval also appears much too narrow to 
accommodate such extremes as the 1872 Baltic 
Sea flood with a reasonable return period. This 
brings us to the primary topic of this brief com-
munication; namely whether the most commonly 
used confidence intervals for return level esti-
mates adequately capture the uncertainty in those 
estimates or whether some other metric may be 
preferable for planners needing information about 
what extremes might be possible.

Material and methods

In what follows, we describe how our return 
level curves are estimated from tide gauge data. 

Fig 1. Bathymetric chart of the Baltic Sea showing 
the location of our tide gauge station Ystad and the 
Falsterbo peninsula. Bathymetric contours are drawn 
every 10m up to a depth of 100 m then every 100 m.
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Our approach is typical of both industry and 
scientific practise. However, we should note that 
it is certainly not the only possible approach to 
derive extreme value statistics. and that method-
ological differences in how return levels are esti-
mated, such as whether block maxima or peak 
over threshold is used, can lead to considerable 
differences in the results (Wahl et al. 2017). Con-
siderable differences may also occur owing to 
choices of fitting method. The two most common 
methods are the maximum likelihood method 
and the probability weighted moments method, 
but other more novel methods also exist (Mak-
konen 2008, Makkonen and Tikanmäki 2019).

Our analysis is based on data from the Ystad 
tide gauge (Fig. 1). The tide gauge data is 
detrended to remove mean sea level rise and ver-
tical land motion. The time series exists for the 
years 1886–1987, with hourly data and has no 
missing values. The largest sea level measured 
during this period is 1.67 m above the mean. 
Return value estimates are derived by fitting a 
Generalized Extreme Value (GEV) distribution 
to a time series of yearly sea level maxima. The 
analysis is thus making use of the Fisher-Tip-
pett-Gnedenko theorem, which states that block 
maximum of samples can only converge in dis-
tribution to the GEV distribution. A block length 
of one year is used, but instead of a calendar year 
we use a year starting in July and ending in June. 
The Baltic Sea has strong, low frequency sea 
level variability (Hünicke et al. 2015, Johans-
son and Kahma 2016) that affects the extremes, 
but extremes nearly never occur during summer 
months (Männikus et al. 2020). The approach is 

thus tailored to give rise to independent blocks. 
In total we have 99 such blocks.

Algorithmically on a user level, our proce-
dure of estimating return levels is simple. The 
first step is to fit a GEV distribution, which has 
three parameters: shape (ξ), scale (σ) and loca-
tion (µ), to the time series of yearly sea level 
maxima from the tide gauge. The second step is 
to calculate return levels from the inverse of the 
GEV cumulative distribution function using the 
three parameters derived in step one. We used 
MATLAB (ver. 2015a) for this analysis, making 
use of the maximum likelihood based gevfit 
function in step one and gevinv in step two. A 
comparison of the fitted GEV cumulative distri-
bution function to the empirical one indicates a 
reasonable fit (Fig. 2).

Confidence intervals for the return levels 
can be produced in several different ways. One 
commonly used technique is the delta method 
(Coles 2001), which uses a truncated Taylor 
series expansion of the return level and a likeli-
hood based estimate of the uncertainty in the 
GEV parameters. The delta method is elegant 
and computationally cheap, while a drawback 
of the method is that confidence intervals are 
symmetric around the central estimate. Another 
commonly used, and often preferable, confi-
dence interval is the profile likelihood based one 
(Caires 2011, Mathworks 2020). This method, 
unlike the delta method, does not rely on lineari-
zation and its interval is not symmetric around 
the central estimate. Here we will compare delta 
method and profile likelihood based confidence 
intervals to intervals produced using parametric 

Fig 2. Comparison of the fitted GEV cumulative 
probability function and the empirical one for the 
Ystad station. Both the fitted and empirical distri-
butions reflect the full 99 year data set.
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bootstrapping methods similar to those used in 
Kyselý (2008) that more directly emulates the 
way return levels are estimated in practice.

The first bootstrapping method is used to 
model the spread in return level estimates that 
owes only to the finite length of the observa-
tional record. To do so, we assume here that the 
GEV parameters estimated from the station data 
by the gevfit function are identical to those of 
the real underlying yearly maximum sea level 
distribution at the site. This estimate therefore 
underestimates the uncertainty in the derived 
return levels, because the real parameters of the 
GEV distribution are never known a priori in real 
applications of this nature. The likelihood that a 
sample, like the observational record, or indeed 
any finite sequence of random numbers drawn 
from some distribution will be fitted to a different 
distribution decreases as the length of the sample 
increases. This effect is quantified by drawing 
m × n random numbers from the, here assumed 
real, GEV distribution, where m = 30 000 is 
the ensemble size and n is the number of years 
of data. These numbers are drawn using MAT-
LAB’s gevrnd function with the shape, scale and 
location parameter derived from the tide gauge 
data with the gevfit function. A return level curve 
is calculated for each ensemble member using 
the methodology described above and 95% con-
fidence intervals are then calculated as the 0.025 
and 0.975 quantiles of this ensemble.

Our second bootstrapping method is based on 
the idea that there might be tide gauges that pro-
duce very extreme and very rare outliers, whose 
real return level curves are significantly higher 
than the one we inferred from observations, but 
which also create samples that are comparable 
to our observed historical data. We thus attempt 
to find the most extreme tide gauge whose 95% 
confidence interval contains our best estimate of 
the return level at the site.

In practise, we think of (ξ, σ, µ) triplets as 
plausible tide gauges, and we ask the question 
which of these gauges give rise to return level 
estimates whose 95% confidence interval con-
tains our estimate. Formally, we seek the set S, 
defined as:

 S = [(ξ, σ, µ) : RLobs ϵ 95% CIRL], (1)

where RLobs is the observationally-based return 
level estimate and 95% CIRL is the confidence 
interval on the return level of the (ξ, σ, µ) triplet 
estimated using the first bootstrapping method. 
To bring down the computational cost, we 
restrict ourselves to check that RLobs ϵ 95% CIRL 
for the 10 000 year return level. Even so, it is, 
of course, impossible to test all (ξ, σ, µ)triplets. 
Moreover, it seems unlikely that triplets that are 
extremely far from our best estimates of ξ, σ and 
µ would be relevant. We therefore impose the 
additional constraint that we are only interested 
in the triplets belonging to the set Z, defined as:

  (2)

Thus, we probe only the cuboid in ξ-σ-µ 
space, whose boundaries are defined by the 95% 
confidence intervals of the individual parameters. 
Here we use the parameters confidence intervals 
derived from the observational estimate in our 
basic case. In all other cases, where we look at 
the impact of changing n, we use the average 
of the confidence intervals for the GEV param-
eters derived when fitting the 30 000 ensemble 
members used in the first bootstrapping method 
for the same purpose. Note, that this cuboid has 
a larger volume in ξ-σ-µ space than the region 
used to compute the profile likelihood based 
confidence interval (Mathworks 2020), and thus 
admit more extreme return levels.

Formally, we define our new interval as the 
infimum and supremum of:

 B = [RL(ξ, σ, µ):(ξ, σ, µ) ϵ S ∩ Z]. (3)

Some salient points about B is that; B is not 
a classical confidence interval associated with 
some given probability, although it is related 
to these constructs since return levels in B are 
related to triplets whose 95% confidence inter-
vals contain our return level estimate. This dif-
ference is of no concern to us since our goal is 
to explore measures that suitably highlights the 
uncertainties in return levels derived from obser-
vational time series. The infimum and supremum 
of B must come from triplets on the boundary of 
either S, Z or on the boundaries of both. This fol-
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lows directly from the fact that if the supremum 
of B was not a triplet on the boundary of either S 
or Z, then there must be a triplet in S ∩ Z whose 
return level is higher than the supremum, given 
that the partial derivatives of the return level 
with respect to the GEV parameters are non-
zero. Instinctively, we would be more comfort-
able with an upper bound found on the boundary 
of S than Z, although we cannot prove that this 
is preferable. It does appear to us a stronger 
constraint that no other triplet whose 95% CIRL 
contains RLobs gives a larger return level, than 
that no other triplet within our region of interest 
does the same.

Estimating the interval defined by the infi-
mum and supremum of B is computationally 
costly, even when using the simplification 
described above. In our implementation we re-
solve the cuboid in ξ-σ-µ space, with 50 points 
in each coordinate direction and we use an 
ensemble of 400 members when calculating the 

return level confidence intervals for each triplet. 
Making good initial guesses of what the infimum 
and supremum of B might be, and only probing 
triplets that give more extreme values than those 
guesses has proven to be an efficient way of 
saving computational time.

Results

The return level curve and confidence intervals 
are derived from the Ystad tide gauge record 
for some different lengths of the observational 
record (Fig. 3). The maximum likelihood-
based estimates of the GEV parameters are 
ξ = −0.0910, σ = 0.1764 and µ = 0.7880. The 
lighthouse keeper in Ystad lighthouse recorded a 
sea level 1.96 m above the mean during the 1872 
Baltic Sea flood (Johansson and Nerheim 2020). 
Based on the return level curve derived here; the 
return period of the sea level reached during the 

Fig 3. Return level as a function of return period for different record lengths and with several examples of 
confidence intervals for the Ystad tide gauge. The abbreviation "CI-params known" reflects the 95% confidence 
intervals from the first bootstrapping method that assumes that the estimated GEV parameter values are their true 
values. inf(B)-sup(B) shows the infimum and supremum of the set B. 95% CI-delta method and 95% CI-likelihood 
based represent the 95% confidence intervals of the delta method and the profile likelihood method respectively.
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1872 flood in Ystad is 27 000 years. This, is even 
longer than the return period estimated for the 
same event in Fredriksson et al. (2016). The dif-
ference between our estimates stems both from 
methodological differences and differences in the 
estimates used for the sea level reached during 
the 1872 event.

The basic case in the figure is that with 
n = 99, as it uses the whole observational time 
series. The other cases are illustrations of how 
the confidence intervals converge with n. Already 
from the basic case it is evident that the different 
confidence intervals give rather different results, 
especially for the upper bound. In particular, it is 
clear that the symmetric assumption used for the 
delta method underestimates the upper bound. 
Moreover, both the commonly used delta method 
and the profile likelihood based confidence inter-
vals appear to be too narrow, as they are con-
siderably narrower than the first bootstrapping 
method’s confidence interval, which is derived 
using the unrealistic assumption that the real 
GEV parameters are known.

The lighthouse keeper’s estimate of a sea 
level 1.96 m above the mean only enters the 
delta method confidence interval at a return 
period of 1056 years. Moreover, other eyewit-
ness accounts have suggested that a sea level 
2.4 m above the mean was reached at the Fal-
sterbo peninsula (see Fig. 1) about 60 km west 
of Ystad (Fredriksson et al. 2016). The same 
authors also found that on average the yearly 
maximum sea level at the Falsterbo peninsula 
is 7.7 cm higher than that in Ystad, and that the 
two stations are highly correlated. This average 
difference is so much smaller than the differ-
ence between the two estimates for the 1872 
Baltic Sea flood that our estimate appears to be 
conservative. Thus, the delta method, the profile 
likelihood based method and the first bootstrap-
ping method all appear to produce confidence 
intervals that are too narrow to accommodate 
this event with a reasonable probability.

The second bootstrapping method, in con-
trast to the first and the two common methods, 
gives estimates that are plausible even consid-
ering extreme events such as the 1872 Baltic 
Sea flood. The bootstrapping techniques are also 
useful for determining how fast the uncertainty 
goes down as the length of the instrumental 

record increases. A typical Swedish tide gauge 
record with hourly resolution is about 50 years 
long, while the longest are more than 100 years 
long. The convergence of the confidence inter-
vals toward the real return level is fastest for 
small n. However, convergence is slow enough 
that high return levels will be extremely uncer-
tain for the foreseeable future (Fig. 3). The inter-
val given for the 10 000 year return level with 
the second bootstrapping method with n = 50 for 
example, is more than four times larger than the 
IPCC’s projected mean sea level rise at Ystad 
between today and 2100, under their highest 
emission scenario RCP8.5 (Oppenheimer et al. 
2019, Hieronymus and Kalén 2020).

We find all of the triplets giving rise to the 
infimum and supremum of B, except the supre-
mum in the n = 99 case, to belong to the bound-
ary of S. Three of the seven triplets that belong 
to the boundary of S, however, also belong to the 
boundary of Z.

Discussion

Given that return levels are commonly used 
in coastal spatial planning and may dictate for 
example if housing development is allowed in 
certain locations, it is of great importance to 
have a good understanding of the uncertainty 
in such estimates. Here we conclude that differ-
ent 95% confidence intervals give considerably 
different ranges, especially on their important 
upper bounds. Moreover, we find the commonly 
used delta method and profile likelihood based 
method give too narrow confidence intervals to 
capture plausible ranges for the real return levels 
in the Southern Baltic Sea when compared to 
historic floods. Note that, the confidence inter-
vals discussed are really statements about the 
confidence in the estimation process, rather than 
statements about the confidence that the true 
return level value should fall within the specific 
intervals. Therefore, it is in a sense wrong to 
call them too narrow, as it implies judging them 
on metrics they were not designed to measure. 
However, they are too narrow in the sense that 
they do not appear to accurately capture a plausi-
ble range for the true return level, which is ulti-
mately what is needed for coastal infrastructure 
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planning and which is also how planners typi-
cally interpret confidence intervals.

It should be noted that the above conclu-
sion relies on eyewitness accounts of sea sur-
face heights reached during past storms. Such 
accounts typically include also effects of wind 
waves. Comparing them to still water levels 
measured by tide gauges as done here may thus 
exaggerate the inferred historical still water level 
(Wahl et al. 2012, Leijala et al. 2018). Other 
uncertainties owing to for example human errors 
and timing of old observations could also affect 
our conclusions. Moreover, so can uncertain-
ties owing to methodological differences in how 
return values are estimated (Wahl et al. 2017, 
Makkonen and Tikanmäki 2019). Non-station-
arity in sea level extremes is another potential 
explanation for the mismatch between derived 
return levels and historic observations. Linear 
trends in the location parameters have, for exam-
ple, been found in the Baltic Sea in model exper-
iments covering the years 1979–2012 (Kudryavt-
seva et al. 2018). Nevertheless, in the case of the 
1872 Baltic Sea flood, we don’t believe that 
either of these potential sources of error fully 
explain the mismatch between our derived return 
levels and the historic observations.

We believe a more plausible explanation for 
the presumed shortcoming of the GEV analysis 
presented here is tied to the very prominent low 
frequency sea level variability in the Baltic Sea. 
Certain atmospheric conditions can raise the 
sea level in the Baltic Sea by more than half a 
meter for several weeks (Hünicke et al. 2015, 
Johansson and Kahma 2016). Storms that arrive 
during such episodes can create extreme outliers 
in sea level that fit poorly with derived return 
level curves (Suursaar and Sooäär 2007). Such 
extremes are perhaps best viewed as coming 
from a different population than other yearly 
maxima, and a GEV analysis with a longer block 
length might be needed to ensure that the dif-
ferent blocks are in fact drawn from the same 
distribution.

Our and others presumption that return level 
estimates are often biased low (Suursaar and 
Sooääar 2007, Fredriksson et al. 2016, Gor-
deeva and Klevannyy 2020), suggests that the 
probability of flooding may be underestimated 
especially for long return periods. On the other 

hand, the confidence intervals from the second 
bootstrapping method for the 10 000 year return 
level, which is sometimes favoured for planning 
(Boverket 2020), are so wide that the informa-
tion is likely useless for most planning purposes. 
Thus, it appears that there is a considerable dif-
ference between what planners want and what 
one can reasonably expect to extract from data. 
Given the slow convergence of the return level 
estimates with new data, it seems that nota-
ble improvements in these uncertainty estimates 
can presently only be achieved through mod-
elling experiments where longer time periods 
than the observed history can be modelled (see 
e.g., Särkkä et al. (2017)). A computationally 
cost efficient way of achieving this could be to 
use machine learning-based regression models 
(Hieronymus et al. 2019). Another plausible path 
is to rely more on physical insights or scaling 
experiments such as those of Hieronymus et 
al. (2018), where the effect of increased wind 
speeds on return levels are estimated — than on 
statistical inferences. However, while much can 
still be learnt about the physics of flooding, it is 
often hard to translate such physical insights into 
frequency metrics such as return periods. Moreo-
ver, hydrodynamical models contain biases and 
do not resolve all processes that occur in nature, 
corrections are therefore often needed before 
accurate return levels can be inferred (Björkqvist 
et al. 2020).

Regardless of how one’s estimate is derived, 
it is important that it comes with an with an 
appropriate quantification of uncertainty. We 
argue that the second bootstrapping method 
could be an improvement over the other methods 
because: 1) it gives more plausible estimates 
than the other methods as evidenced by histori-
cal data; and 2) the approach may be able to find 
possible tide gauges that create infrequent and 
very large outliers, but that also create samples 
that are reasonably compatible with our sampled 
history. However, as mentioned earlier, both the 
potential non-stationarity of the extremes and 
the possibility of extreme outliers belonging to 
another population could suggest that a proper 
determination of the GEV parameters can only 
be done with a much larger block length than one 
year, or perhaps using non-stationary methods. 
All of these intervals should thus be thought of 
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as plausible ranges rather than as exact quantifi-
cations of uncertainty. This is perhaps the most 
important piece of information that must be 
conveyed between the scientists and engineers 
that produce estimates and data and the decision 
makers and stakeholders who use them.
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