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Catch per unit effort (CPUE) indices, derived from daily logbooks of open sea fisheries or 
from standard gill-net surveys have traditionally been used as a source of information on 
trends in fish stock biomass or abundance. Nowadays, the systematic collection of catch 
and effort data from coastal small-scale fisheries has gradually been launched as well, 
e.g., in the Baltic Sea. The data from coastal fisheries is typically collected in monthly 
logbooks. We demonstrate that raw CPUEs, CPUEs based on subsetted data and CPUE 
indices based on linear mixed models (LMMs) from coastal gill-net fishery data covering a 
20-year period yield different results on trends in abundance. The use of advanced counting 
methods is recommended to reduce the amount of the annual variation not attributable to 
changes in abundance. Thereafter, CPUE indices based on the monthly logbook data can 
produce valuable and cost-effective information on fish abundance.

Introduction

The catch per unit effort (CPUE), i.e., the amount 
of animals caught by a certain effort (e.g., fish 
weight/gill-net/day), is an indirect measure of 
the abundance of a target species (e.g., Gulland 
1983). CPUE indices of fish have commonly 
been used in fishery science, as well as for envi-
ronmental monitoring and assessments. In the 
Baltic Sea, trends in abundance of key coastal 
fish species and coastal fish key functional 
groups have been monitored based on CPUE 
indices counted from standard gill net surveys 
(e.g., Ådjers et al. 2006, Bergström et al. 2016). 

These results have been further used in thematic 
assessments of biodiversity in the Baltic Sea 
(HELCOM 2018). CPUE indices based on gill-
net surveys are also widely used in the ecologi-
cal classifications of lakes according to the EU 
Water Framework Directive in several European 
countries (e.g., Olin et al. 2011, Argillier et al. 
2012, Kelly et al. 2012).

Although the CPUE indices should, ideally, 
be based on fishery-independent data collection 
methods, such as the above-mentioned gill-net 
surveys, large data sets of fishery independent 
data are often extremely costly to collect (Maun-
der and Punt 2004). On the other hand, there is 
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a vast amount of catch and effort data available 
from logbooks of commercial sea fishery, but 
this data is certainly much less standardized. The 
scientific literature on the methodology of CPUE 
indices of commercial fishery is often based on 
data from open sea fisheries using trawl, purse 
seine or longline (e.g., Battaile and Quinn II 
2004, Campbell 2004, Maunder et al. 2006, 
Mikkonen et al. 2008, Quirijns et al. 2008, Tsai 
et al. 2015, Helle et al. 2015), derived typically 
from daily logbooks.

Shortages and risks of misinterpretation of 
CPUE indices are often acknowledged (e.g., 
Hilborn and Walters 1992, Harley et al. 2001). 
The risks associated to raw CPUE indices, i.e., 
total catch of a fishery divided simply by the 
sum of effort associated with the catch, have 
been known for a long time (see Biseau 1998, 
Maunder and Punt 2004 and references therein). 
Maunder et al. (2006) and ICES (2017) state that 
raw CPUE indices should not be used unless 
there is a very good justification to accept them. 
Thus, various approaches have been developed 
for daily logbook data to avoid biased results 
related to raw indices. An initial step when ana-
lyzing large logbook data sets often involves 
identification and discarding of observations that 
are considered to be uninformative or even mis-
leading. Stephens and MacCall (2004) refer this 
process as subsetting the data. A simple example 
could be discarding observations where the spe-
cies of interest is caught only occasionally as a 
bycatch or including only data from selected ves-
sels (e.g., Helle et al. 2015). Still, several factors, 
e.g., spatial or temporal changes in catchability, 
vessel and gear properties and targeting behavior 
of fishermen can cause extra variation and bias 
to CPUE indices as an indicator of abundance. 
Hence, various standardization approaches have 
been developed to remove the effect of these fac-
tors on CPUE indices for trawl and longline fish-
eries (e.g., Battaile and Quinn II 2004, Campbell 
2004, Maunder and Punt 2004, Maunder et al. 
2006, Bishop et al. 2008, Quirijns et al. 2008). 
General linear models and other advanced sta-
tistical methods have often been used in the 
standardization (see Battaile and Quinn II 2004, 
Campbell 2004, Stephens and MacCall 2004, 
Bishop et al. 2008, Mikkonen et al. 2008, Tsai 
et al. 2015), a major advantage being that a wide 

variety of factors can be accounted for in a rela-
tively simple analysis.

The systematic collection of catch and effort 
data from small-scale coastal fisheries, e.g., com-
mercial gill-net fishery, has gradually been initi-
ated e.g., in the Baltic Sea, where the obligation 
to deliver monthly logbook data is applied even 
to the smallest (< 10 m) vessels in most coun-
tries. In Finland, this sort of data collection from 
monthly logbooks started already in 1980. How-
ever, only a few scientific papers using monthly 
logbook data have so far been published. CPUE 
indices based on monthly logbook data, instead 
of gill-net monitoring data, have been used along 
the Finnish coast of the Baltic Sea to assess 
abundance of coastal perch (Perca fluviatilis) 
and Cyprinids (freshwater fish of family Cyprin-
idae) (HELCOM 2018). Recently, these CPUE 
indices have been used in studies of the effects 
of great cormorant (Phalacrocorax carbo) pre-
dation on coastal perch and pike-perch (Sander 
lucioperca) stocks (Lehikoinen et al. 2011, 
Heikinheimo and Lehtonen 2016, Lehikoinen et 
al. 2017). The CPUE indices in these reports and 
scientific papers have been typical raw CPUEs, 
produced by summing all the annual catches of a 
certain gill-net type (e.g., mesh-size 36-50 mm) 
for all fishermen and months and then dividing 
by the summed fishing efforts of those obser-
vations where catches (> 0 kg) of the species 
were reported. The risk for biased results is thus 
evident. The use of data collected from monthly 
logbooks, such as data from the Finnish coast, to 
calculate CPUE indices poses certain extra chal-
lenges compared to the use of daily data from 
open sea fisheries. The small-scale coastal fish-
ery, typically with gill-nets or trap-nets, is very 
often a mixed fishery. The problems in allocating 
the effort to various species are also well known 
e.g., concerning mixed trawl fishery data col-
lected from daily logbooks (e.g., Biseau 1998), 
but the problems are likely to be emphasized 
with monthly logbook data. The fishing sites and 
target species of a coastal fisherman might vary 
during a calendar month, and in a one-month 
period, the probability of individuals of bycatch 
species entering among those reported is obvi-
ously higher than in daily reporting. Another 
aspect of the monthly logbook data is that the 
variation in the amount of effort between obser-
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vations (i.e., monthly efforts of fishermen) can 
also be extremely high, varying in the gill-net 
fishery from a few gill-net days to several thou-
sand gill-net days per a month.

The aim of this study is to develop more 
advanced and less biased approaches to use 
monthly logbook data from coastal commercial 
fishery to calculate CPUE indices. Additionally, 
the aim is to promote the use of logbook data 
of coastal fishery in other areas as well. The 
monthly logbook data from commercial gill-net 
fisheries on the Finnish coast of the Bothnian 
Bay over a twenty-year period (1996–2015) was 
used to estimate CPUE indices for perch. During 
this period, the annual commercial gill-net catch 
of perch in the area has doubled. This is among 
the most important species for small-scale com-
mercial fisheries in the northern Baltic Sea, e.g., 
along the Finnish coast, where perch comprises 
15–20% of the annual commercial catches if 
pelagic species and cod are excluded. It is an 
important target species also for recreational 
fisheries and the total catches of these fisheries 
generally exceed those of commercial fisheries 
(see Official Statistics of Finland 2017a, 2017b). 
Perch is also regarded as a key species in the 
coastal food webs and the abundance of perch 
is used as an indicator of a good environmental 
status (EU Marine Strategy Framework Direc-
tive) in the area (HELCOM 2018). Strong annual 
variation in abundance is typical for perch in the 
Baltic Sea region, as temperatures during the first 
year have clear effects on the year-class strength 
(e.g., Böhling et al. 1991) and fish from a strong 
year-class can dominate the catch for several 
years in large areas. There are obviously sev-
eral overlapping perch populations on our study 
area, but the reasoning for a regional assessment 
covering the entire Finnish coast of the Bothnian 
Bay was that identical regional assessment units 
are used in the thematic assessments of biodi-
versity in the Baltic Sea (HELCOM 2018). The 
logbook data and similar methodology can also 
be used at a more local scale.

We begin with the raw CPUE, which has 
been used so far in monitoring perch abundance 
in the area. Thereafter, we improve the CPUE 
indices by sub-setting the data. In the third 
phase, we calculate abundance indices using 
linear mixed models (LMMs). We also demon-

strate that various versions of CPUE indices do 
not lead to similar conclusions on the abundance 
trends of the studied stock. Finally, we shortly 
discuss the future potential of CPUE indices 
based on monthly logbook data of coastal fisher-
ies.

Material and methods

Data

Catch statistics for the Finnish commercial fish-
eries have been compiled almost in their present 
form since 1980. The central register of com-
mercial fishermen (or family enterprises) also 
includes part-time fishermen. The register was 
renewed in 1995, when Finland joined the EU, 
and as a consequence, the number of registered 
fishermen slightly increased. At the same time, 
the classification of gill-nets in the logbooks 
was renewed. Thus, in this study we focus on 
data collected for the 1996–2015 period. Coastal 
fishing with passive gears is carried out with 
vessels under ten meters long and these vessels 
have been included in the data collection system 
during the entire period. The reporting is man-
datory. The data from these fisheries is entered 
into a monthly logbook (coastal fishing journal) 
stating the total monthly catch (kg) by species, 
the fishing area expressed in ICES statistical rec-
tangles (ca. 30×30 nautical miles), the monthly 
mean amount of gear used and the number of 
active fishing days per month. All the above-
mentioned information is entered separately for 
each "gear class" (altogether 14 classes, see 
Appendix Table A1).

In this study, we use the monthly logbook 
data from the Finnish coast of the Bothnian 
Bay (Fig. 1), which is the northernmost basin of 
the Baltic Sea. Due to its low salinity (around 
3 ppm at the surface), freshwater species and 
migratory species dominate the coastal areas, 
with perch and European whitefish (Coregonus 
maraena) among the most abundant catch spe-
cies at the small-scale coastal fisheries. Other 
common freshwater species include pike (Esox 
lucius) and Cyprinids. During the 20-year 
study period, the commercial perch catch along 
the Finnish coast of the Bothnian Bay has 



94	 Lappalainen et al. • BOREAL ENV. RES. Vol. 25

increased, from 35–70 t/year in the late 1990s 
to 60–95 t/year in the first half of the 2010s 
(Official Statistics of Finland, 2017a). Fyke-nets 
and trap-nets are commonly used in the coastal 
fisheries, but the bulk of the commercial perch 
catch is taken with gill-nets. Gill-nets with mesh 
sizes of 36–45 mm form one "gear class" in 
the logbook and these mesh sizes are the most 
suitable for targeted perch fishing. Thus, we 
restricted our CPUE calculation to this "gear 
class". In addition to perch fishing, these gill-
nets have been widely used for whitefish fishing. 
Perch catches with these gill-nets show a similar 
increasing pattern during the 20-year period, 
as seen in the total perch catch, while catches 
of whitefish have decreased (Fig. 2). Perch and 
other freshwater species typically caught by gill-
nets are generally found in shallow coastal areas 
around the year, but as a cold-water species, 
whitefish is less restricted to sheltered coastal 
areas compared to perch.

Annual raw CPUEs

The monthly raw data, containing reported 
catches of perch with gill-nets had altogether 
9378 observations from 602 fishermen. An 
observation was defined by fisherman, year, 

month and fishing area (ICES rectangle). The 
annual number of fishermen with reported 
perch catches varied from 111 to 196.

Annual raw CPUEs were estimated by 
summing (over all fishermen) the monthly 
perch catches (in weight) and monthly fishing 
efforts and then dividing the summed catch 
by the summed effort. Monthly efforts of a 
single fisherman were calculated for those 
months where perch catches were reported 
as gill-net days by multiplying the reported 
number of fishing days by the reported mean 
number of gill-nets used during the calendar 
month.

This simple method estimates the annual 
CPUE as the weighted mean of the monthly 
CPUEs (weighted by the monthly efforts). As 
the annual distribution of the monthly CPUEs 
were highly skewed to the right (a mass of 
the distribution on the low values, but a long 
tail towards high values) we estimated also 
annual weighted medians with 25% and 75% 
weighted percentile ranges.

Annual CPUEs for subsetted data

In the Bothnian Bay, perch is also caught as 
a by-catch in gill-net fishing targeting other 

Fig 1. Grey rectangles denote ICES statis-
tical rectangles included in this study.
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species, mainly whitefish. The coastal gill-
net fishing for whitefish has undergone some 
changes during our study period (see details 
in the Discussion section). To avoid major 
biases caused by changes in the gill-net fish-
ing, we attempted to exclude observations 
where whitefish was the evident main target 
species. Thus, we discarded all observations 
(monthly reports) where proportion of white-
fish among the gill-net catch was greater 
or equal to 50%. In addition, there is also a 
temporal pattern in the perch fishing, the high 
season being between April/May and Septem-
ber when around 70–90% of the annual gill-
net catch is taken. There is ice cover during 
the winter in the area and the annual timing 
of the ice melting might affect the fishing 
conditions, particularly in April. Hence, we 
included only catches and efforts from May 
to September.

The subsetted data (fulfilling the above 
two conditions) consisted of 3032 observa-
tions from 407 fishermen. The annual number 
of fishermen varied from 39 to 113. Annual 
CPUE indices were estimated similarly as for 
the raw data.

Annual CPUEs for subsetted data using 
linear mixed models

The subsetted data was further analyzed using a 
linear mixed model in order to take into account: 
1) the effects of several explanatory variables 
(see Eq. 1); 2) correlations of CPUE observa-
tions of a single fisherman; 3) the skewness 
of the CPUE distribution; and 4) non-constant 
variation of CPUE observations (weighting of 
observations).

When two observations had the same fisher-
man-year-month combination but different fish-
ing areas (ICES rectangles, Fig. 1), only the 
observation with the most used fishing area for 
the fisherman was chosen to simplify modelling. 
The modelling data had 3027 observations.

The catch per unit effort (kg/gill-net 
days) (data range 0.0025–11.0, median 0.25, 
mean 0.43) was explained by the fixed effects of 
year (20 categories), month (5 categories), fish-
ing area (9 categories), proportion of whitefish 
in the catch (6 categories with midpoints, as a 
percentage: none, 5, 15, 25, 35 and 45) and effort 
(continuous) and hierarchical random effects 
accounting for variation between fishermen as:

Fig 2. Commercial catch (tonnes) of perch and whitefish with gill-nets with mesh sizes 36–45 mm in the study area 
along the Finnish coast of the Bothnian Bay in years 1996–2015.
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 ln(CPUEiym) = β0 + β1,y + β2,m + β3,a(i,y,m) 
                             + β4,p(i,y,m) + β5 × ln(Eiym) , (1)
         + εi + εiy + εiym  

where a(i,y,m) is the fishing area of fisherman, 
i, during the month, m, of year, y; Eiym is the 
effort; CPUEiym is the resulting catch per unit 
effort; and p(i,y,m) is the categorized propor-
tion of whitefish in the catch. The fixed effects 
parameters to be estimated are: the intercept 
β0, representing the reference levels of the 
categorical variables; β1,y for the 19 other years 
than the reference year, representing the dif-
ference between year, y, and the reference, 
similarly β2,m for 4 months; β3,a for 8 areas; β4,p 
for 5 whitefish proportion categories; and β5 
represents the parameter of logarithmic effort.

Although observations with the great-
est proportions (≥ 50%) of whitefish were 
excluded, the proportion was still used in the 
modelling to provide rough information on 
the targeting behavior of the fisherman. It was 
included as a categorical variable, because 
in 34% of the catches (observations) there 
were no whitefish. The logarithmic effort 
was included in the model because the effort 
seemed to have a nonlinear effect on the CPUE 
(Fig. 3).

The random effects of fisherman, εi, and 
the year for fisherman, εiy,were included in 
the model to take account of the evident cor-
relations between CPUE observations of a 

single fisherman. All random terms εi, εiy, and 
εiym were assumed to be normally distributed, 
independent between fishermen and mutually 
independent, except that autoregressive covari-
ance structures were assumed for the repeated 
measures of year and month, i.e., for the time 
series of εiy with a fixed i and εiym with fixed i 
and y.

After fitting the model, the annual means 
of ln(CPUE) with their 95% confidence limits 
were estimated using the fixed part of the 
model and adjusting other variables than the 
year to their means effects. The means were 
then back-transformed to the original scale, 
where they can be considered estimates of 
the median of the right skewed distributions. 
This interpretation is based on the symmet-
ric distribution the residuals of the fixed part 
(marginal residuals; Fig. 4) and monotonicity 
of the logarithmic transformation (Mukherjee 
et al. 1998).

There were large differences between 
the monthly efforts (data range 2–3200, 
median 120, mean 251). CPUE observations 
associated with large efforts have smaller vari-
ations than those associated with small efforts 
(Fig. 3), which might suggest that they should 
receive more weight in parameter estimation. 
However, in addition to normalizing the model 
residuals (Fig. 4), logarithmic transformation 
of the CPUE also homogenized them (Fig. 5) 
and re-weighting was therefore unnecessary.

Fig 3. The median CPUE of perch (line) with a 25 and 
75 percentile range (bars) in categorized efforts for the 
modelling data. in years 1996–2015.

Fig 4. Distribution of the marginal residual (bars) with 
a fitted normal distribution for the linear mixed model 
(see Eq. 1). 
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Linear trends over years for CPUEs based 
on the three estimation methods were exam-
ined for two time periods (1996–2015 and 
2003–2015). For the CPUEs from raw data 
and subsetted data, linear trend was tested 
using simple regression model (20 observa-
tions in 1996–2015 and 13 observations in 
2003–2015). For the mixed model CPUE, 
linear trend was tested within the model (at the 
logarithmic scale). Year was used as continu-
ous variable in all trend analyses.

The SAS statistical software (ver. 9.4; SAS 
Institute Inc.) was used in the analyses. The 
statistics for the raw and subsetted data were 
estimated using the MEANS procedure, while 
the linear mixed model was analyzed using the 
MIXED procedure.

Results

The raw CPUE suggests that there is a con-
tinuous increasing trend in perch abundance both 
in the 20-year study period and in 2003–2015 
(p < 0.001; Fig. 6), and the annual raw CPUEs 
during the first years (0.06–0.12 kg/gill-net day) 
have approximately doubled in the last years 
(0.17–0.23 kg/gill-net day). After subsetting, 
including only those observations from May to 
September where the proportion of whitefish was 
less than half, the general level of the CPUEs 
increased (range 0.19–0.47) and the annual vari-
ation increased considerably too. The CPUE sug-
gests a slight increasing trend (p = 0.04) for the 
20-year study period, but the trend was not evi-
dent (p = 0.24) any more in 2003–2015 (Fig. 6). 

Fig 5. The mean (dashed line) and median (solid line) 
of the marginal residual with a 25 and 75 percentile 
range (bars) for the medians in categorized efforts (mid-
points presented) for the linear mixed model.

Fig 6. Raw CPUE (weighted mean CPUE; dashed line) and weighted median CPUE (solid line) for perch with 
weighted 25 and 75 percentile ranges in years 1996–2015 for the raw data (left) and for the subsetted data (right).
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The annual medians showed a similar pattern over 
the years but the medians were considerably lower 
than the means.

The annual medians estimated by the linear 
mixed model with year, month, fishing area, pro-
portion of whitefish and effort as the explana-
tory variables (p < 0.001 for each; see Appendix 
Table A2) showed an increasing trend (p < 0.001) 
for the 20-year study period (Fig. 7). The CPUEs 
stayed at the same level for the 2003–2015 period 
and no trend (p = 0.65) was detected. The annual 
medians varied from 0.11 to 0.22 kg/gill-net day. 
Correspondingly, the estimated medians of the 
month varied from 0.14 (September) to 0.21 
(July), while the medians of the fishing area 
varied from 0.08 to 0.32, with the three lowest 
areas being the southernmost statistical rectan-
gles. The medians of the proportion of whitefish 
in the catch varied from 0.12 (category 45%) 
to 0.28 (category 5%) kg/gill-net day. Repeated 
measures correlations between CPUE observa-
tions of single fishermen were strong. Correlation 
between CPUE observations of two successive 
months of single fishermen was 0.67, and simi-
larly, correlation between CPUE observations of 
two months in successive years was 0.53.

Discussion

There is no fishery independent data available 
on perch abundance for the Finnish coast of 

the Bothnian Bay and the commercial catch 
and effort data is the only available source of 
information. The continuous increasing trend in 
the raw CPUE, as well as in the total gill-net 
catch, suggests increased abundance of perch 
in the area. The trend, however, was not evident 
based on the annual estimates of the linear mixed 
model using subsetted data after the first years 
were excluded. Similar differences in various 
CPUEs were demonstrated also by Helle et al. 
(2015). They studied the CPUEs of ling (Molva 
molva L.) in a Norwegian long-line mixed-spe-
cies fishery and showed that different percep-
tions of the state of a stock can be formed from 
different CPUE series, depending on whether 
the series is based on all the catches, or only on 
those in which the species were targeted.

A likely reason for the differences in our 
example, especially since 2003, is the well-
known fact that raw CPUE data is sensitive to 
biases in cases there are changes in the fishing 
(see Maunder et al. 2006, ICES 2017). In the 
Bothnian Bay, perch and whitefish have been 
the most common target species for gill-net 
fishing. The main fishing sites for these species 
partly overlap and catches of both species were 
commonly reported simultaneously in our data 
collected from the monthly logbooks. During 
our 20-year study period, local gill-net fishing 
has undergone changes. The abundance of ringed 
seals in the Bothnian Bay has roughly dou-
bled from 4000 to 8000 individuals (HELCOM 
2018). Grey seals are also common nowadays 
in large areas of the Baltic Sea including the 
Bothnian Bay. The growth of the population 
was strong during our study period. In 2000, the 
minimum grey seal population in the Baltic Sea 
was about 10 000. More than 20 000 grey seals 
were seen during the monitoring counts in 2009 
and around 23 000 in 2010 (Kauhala et al. 2012). 
The increasing number of seals has hampered 
gill-net fishing in the Bothnian Bay, especially 
for whitefish, as the main fishing sites of this spe-
cies are located often in outer archipelago areas 
connected to the open sea, where seals are also 
more common than in the inhabited inner areas 
of the coast (Alpo Huhmarniemi, pers. comm.). 
Hence, it is evident that the focus of gill-net fish-
ing, even when targeting whitefish, has gradually 
been shifted towards the inner coastal areas close 

Fig 7. Median CPUE for perch (solid line) with a 95% 
confidence interval in years 1996–2015 for the linear 
mixed model.
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to large islands, bays and estuaries, i.e., into hab-
itats preferred also by perch and other freshwater 
species such as pike and Cyprinids.

In addition to this, the appreciation of perch 
has increased among consumers and commercial 
fishermen. This is also reflected in the producer 
prices of these species as the producer price of 
ungutted perch has doubled from the early 2000s 
to 2013–2015. At the same time, the producer 
price for gutted whitefish has increased by only 
30%, though the price of whitefish is still almost 
double of that of perch (Official Statistics of 
Finland 2017c). This has likely increased the 
profitability of fishing for perch in the inner 
areas. Unfortunately, the spatial resolution of the 
logbook data, i.e., the ICES statistical rectangles, 
is too low to perceive any changes of this scale 
in the fishing areas. The logbooks do not record 
the target species either. It is clear that our raw 
CPUE indices were not able to take into account 
these sorts of changes in the fishing and the raw 
CPUE indices rather reflected the annual total 
catches. The lower annual variation in the raw 
CPUE indices compared to the two other indi-
ces suggests that the raw CPUE indices prob-
ably also underestimated the annual variation 
in abundance, which is typical for perch in the 
Baltic Sea region (Böhling et al. 1991).

Our model-based estimates of the annual 
CPUEs are adjusted for the variable alloca-
tion of the effort between areas, fishers, and 
months, and are standardized to a fixed level of 
effort. Such adjusted and standardized estimates, 
using relevant available explanatory variables, 
are much more robust for changes in fishing 
and reflect the true trends in stocks more reli-
ably than raw CPUE indices. Fisherman-specific 
random effects allowed us to take into account 
the autocorrelation of the CPUEs of one fish-
erman between subsequent months and years. 
With linear mixed models, we were also able to 
control the non-constant variation of observa-
tions by transforming the response variables, and 
assessing the need for re-weighting the observa-
tions. 

In the choice of the statistic for the central 
tendency, the median is usually preferred over 
the mean in skewed distributions because it is 
robust to outliers and its interpretation is clear: 
half of the values are smaller and half are larger 

than the median. The raw CPUEs, used e.g., 
in a few studies of coastal fish in the Baltic 
Sea (Lehikoinen et al. 2011, Heikinheimo and 
Lehtonen 2016, Lehikoinen et al. 2017), how-
ever, are means and often from highly skewed 
data. In the raw CPUEs of our study, the annual 
means exceeded the 75% percentiles in many 
years indicating that a few observations with 
high values have a substantial impact of the 
means. Thus, the means for both the raw data 
and subsetted data were much higher (doubled) 
than the respective medians, which would be 
more suitable for this type of data. With the 
linear mixed models used here, when the mono-
tonic nonlinear transformation (e.g., logarithm) 
of the response variable is required, estimates 
of the median are also more easily available 
than those of the mean. If the residuals in the 
transformed scale are symmetrically distributed, 
estimates of the median are obtained on the 
original scale from the fixed part of the model. If 
it is necessary to estimate the means with mixed 
models, some bias correction is needed for the 
fixed part predictions to be back-transformed to 
the original scale. However, the methods for bias 
correction are usually very complicated.

In this study, we calculated CPUEs for the 
entire 350-km long Finnish coastline of the 
Bothnian Bay. Lehikoinen et al. 2017 calculated 
raw CPUEs for single ICES statistical rectangles 
(there were ten rectangles in our study area). 
Similarly, it is possible to estimate CPUEs for 
more local level by the linear mixed model, but 
it is likely that the confidence limits will grew 
wider as the number of observations decrease. 
Misreporting is a potential source of bias in log-
book data. Hentati-Sundberg et al. 2014 studied 
misreporting in the Swedish pelagic fishery in 
the Baltic Sea and concluded that total catches 
have been underestimated during part of their 
study period (1996–2009) and that systematic 
misreporting of species composition has taken 
place over the whole study period. The pelagic 
fishery in the Baltic Sea is regulated by annual 
quotas and due to the overcapacity in the fishery 
there is an obvious economic incentive explain-
ing the misreporting. There are, however, no 
quotas or other evident reasons for misreporting 
in the coastal fishery for perch and other fresh-
water species in our study area. Neither is there 
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any relevant information available of the issue 
and thus misreporting remains an uncertainty 
factor in our monthly logbook data.

Concluding remarks

We demonstrated that various methods to esti-
mate CPUE indices from coastal gill-net fishery 
data can yield different results and conclusions. 
The risk of biased results with raw CPUEs is 
emphasized in monthly based data form mixed 
fisheries, such as in our case, as the allocation 
of the reported fishing effort for various catch 
species is often difficult or impossible. Then 
even small changes in the targeting behavior of 
fishermen might add bias into the results. Thus, 
standardization by subsetting and modelling is 
recommended to remove most of the annual 
variation in the data not attributable to changes 
in abundance. An advantage of using model-
ling techniques is also their ability to produce 
information for precision estimates. We finally 
conclude that monthly logbook data should not 
be underrated and CPUEs based on that data can 
produce usable information on fish abundance 
for various needs, especially in cases where fish-
ery independent data is not available.
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Appendix
Table A1. Classification of gears in the Finnish monthly logbook.

Herring trap
Salmon trap
Whitefish trap
Other trap
Gill-nets for herring and sprat
Gill-net trap
Other gill-nets, mesh size under 35 mm
Other gill-nets, mesh size 36-45 mm
Other gill-nets , mesh size 46-50 mm
Other gill-nets, mesh size 51-60 mm
Other gill-nets, mesh size over 60 mm
Other longline of hook gear
Pot
Push-up trap
Other gear

Table A2. Estimates of the fixed effects parameters of the linear mixed model for the logarithmic CPUE of perch 
(kg/gill-net days). Reference classes of categorical predictor variables are indicated by zero estimate value. Esti-
mate on row "Intercept" is the expected log-CPUE, when all categorical predictors are set to their reference values 
and continuous predictors to 0. The estimates in the other rows indicate differences from the intercept.

Effect (and value)	 Estimate	 Standard	 Degrees of	 t-value	 Probability
		  error	 freedom		  > | t-value |

	 Intercept		  –1.2732	 0.1865	 1194	 –6.83	 < 0.001
	 Year, 1996		  –0.4011	 0.1578	 1154	 –2.54	 0.0112
	 Year, 1997		  –0.1723	 0.1352	 1002	 –1.27	 0.2028
	 Year, 1998		  –0.1032	 0.1396	 1147	 –0.74	 0.4597
	 Year, 1999		  –0.2940	 0.1306	 1138	 –2.25	 0.0246
	 Year, 2000		  –0.3866	 0.1254	 1094	 –3.08	 0.0021
	 Year, 2001		  –0.6261	 0.1307	 1199	 –4.79	 < 0.001
	 Year, 2002		  –0.3374	 0.1214	 1027	 –2.78	 0.0056
	 Year, 2003		  0.0515	 0.1174	 1070	 0.44	 0.6609
	 Year, 2004		  –0.0344	 0.1197	 1139	 –0.29	 0.7737
	 Year, 2005		  –0.1058	 0.1188	 1171	 –0.89	 0.3735
	 Year, 2006		  0.0576	 0.1111	 1029	 0.52	 0.6042
	 Year, 2007		  –0.0544	 0.1125	 1045	 –0.48	 0.6292
	 Year, 2008		  –0.0829	 0.1103	 1053	 –0.75	 0.4526
	 Year, 2009		  –0.2570	 0.1068	 1119	 –2.41	 0.0163
	 Year, 2010		  –0.1869	 0.1015	 1092	 –1.84	 0.0660
	 Year, 2011		  0.0017	 0.0967	 1071	 0.02	 0.9863
	 Year, 2012		  0.0323	 0.1007	 1139	 0.32	 0.7487
	 Year, 2013		  0.0323	 0.0924	 1164	 0.35	 0.7268
	 Year, 2014		  0.0658	 0.0890	 1154	 0.74	 0.4597
	 Year, 2015		  0				  
	 Month, 5		  0.2219	 0.0460	 2470	 4.82	 < 0.001
	 Month, 6		  0.1950	 0.0479	 2456	 4.07	 < 0.001
	 Month, 7		  0.3682	 0.0456	 2483	 8.10	 < 0.001
	 Month, 8		  0.3101	 0.0409	 1873	 7.58	 < 0.001
	 Month, 9		  0				  
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Table A2. (continued)

Effect (and value)	 Estimate	 Standard	 Degrees of	 t-value	 Probability
		  error	 freedom		  > | t-value |

	 Fishing area, 2		  0.9228	 0.1896	 541	 4.87	 < 0.001
	 Fishing area, 3		  1.1875	 0.2120	 840	 5.60	 < 0.001
	 Fishing area, 6		  1.0801	 0.1796	 724	 6.01	 < 0.001
	 Fishing area, 7		  0.9084	 0.1689	 613	 5.38	 < 0.001
	 Fishing area, 11		  0.6752	 0.1666	 574	 4.05	 < 0.001
	 Fishing area, 12		  1.2699	 0.1876	 895	 6.77	 < 0.001
	 Fishing area, 15		  –0.1648	 0.1831	 756	 –0.90	 0.3685
	 Fishing area, 19		  0.3735	 0.1747	 592	 2.14	 0.0329
	 Fishing area, 20		  0				  
	 Proportion of whitefish, 0%	 0.6559	 0.0598	 2846	 10.96	 < 0.001
	 Proportion of whitefish, 5 %	 0.8350	 0.0637	 2738	 13.11	 < 0.001
	 Proportion of whitefish, 15 %	 0.4539	 0.0601	 2728	 7.56	 < 0.001
	 Proportion of whitefish, 25 %	 0.1978	 0.0597	 2664	 3.31	 < 0.001
	 Proportion of whitefish, 35 %	 0.1083	 0.0576	 2735	 1.88	 0.0604
	 Proportion of whitefish, 45%	 0				  
	 Logarithmic effort		  –0.3349	 0.0168	 2964	 –19.93	 < 0.001


