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Here, our aims are to estimate two most important climate-driven variables of the surface 
wetness condition (SWC) and growing degree days (GDD: a temperature regime) prima-
rily using remotely sensed 8-day composites from Moderate-resolution Imaging Spectrom-
eter (MODIS) sensor over the agriculture and forest-dominated regions in the Canadian 
province of Alberta. The estimation of both SWC and GDD was based on exploiting 
relations between surface temperature and vegetation indices. Our results showed that on 
average in 81.67% of the cases, the MODIS-derived SWC values differed less that ±20% 
from the ground-based measurements of volumetric soil moisture. The MODIS-derived 
GDD values differed less ±20% from the ground-based measurements of GDDs in 90.39% 
of the cases.

Introduction

It is well recognized that climate-driven vari-
ables are critical for both agriculture and forestry 
(Cosh et al. 2010, Latta et al. 2009, Palm et al. 
2010). Two most important such variables are 
the surface wetness condition (SWC, indirectly 
indicating soil moisture (SM), i.e. the amount of 
water in the soil column available to plants); and 
growing degree days (GDD). These variables 
are crucial for vegetation growth and many plant 
functions (e.g., photosynthesis, transpiration, 
both plant and soil respiration, water and nutri-
ent movements within plant, etc.) (Flanagan and 
Johnson 2005, Hari and Nöjd 2009). They both 
can be measured precisely in situ using various 
methods. However, the ground-based methods 

fail to provide the spatial variability, which is 
important for understanding the dynamics at the 
landscape scale. One of the feasible alternatives 
are remote sensing methods, which have already 
been proven to address the spatial dynamics for 
the variables of interest (Anttila and Kairesalo 
2010, Sekhon et al. 2010, Stenberg et al. 2008).

For the last two decades, visible and ther-
mal infrared remote-sensing data were widely 
used to determine SWC. In most cases, SWC 
can be derived from the relationships between 
the vegetation index (VI) and the actual surface 
temperature (Ts) (Carlson 2007, Li et al. 2009, 
Patel et al. 2009). A two dimensional scatter plot 
of Ts-VI usually assumes a triangular (Sandholt 
et al. 2002, Carlson 2007) or a trapezoidal shape 
(Moran et al. 2004, Petropoulos et al. 2009). The 
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edges of these shapes are considered in estimat-
ing SWC (see section Estimation of TVWI below 
for more details). In general, the negative slope 
of the Ts-VI diagram describes the water avail-
ability with respect to the vegetation conditions, 
e.g., (i) high SWC values are found for relatively 
dense vegetation with low Ts values; and (ii) low 
SWC values are found for sparse vegetation with 
high Ts values. To describe the VI component, the 
normalized difference vegetation index (NDVI: 
as a function of surface-reflectance values from 
red and near-infrared spectra; Parviainen et al. 
2010) is used. The Ts-VI space can be defined by 
using either daily or composite values. However, 
Venturini et al. (2004) emphasized uncertainty of 
the daily Ts values acquired by means of remote 
sensing resulting from atmospheric conditions. 
They also mentioned that the use of a multiday 
(e.g., 14- or 16-day) composite of Ts would not 
be useful for their proposed method of deter-
mining f (i.e., the combined effects of Prestley-
Taylor’s α and Budyko-Thronwaite-Mather’s 
wetness parameters) as a part of estimating eva-
potranspiration by using the Ts-VI relation. Other 
researchers (e.g., Patel et al. 2010, Chen et al. 
2010) used composites in the Ts-VI approach for 
determining SWC regimes, and demonstrated 
their effectiveness.

Despite the wider acceptability of the Ts-VI 
method, the major limitation is its applicability 
over a topographically variable terrain (Carlson 
2007), and the fact that it has not been widely 
used over vegetated regions. The topographic-
variability limitation was first addressed by 
Hassan et al. (2007b) for the forest-dominated 
humid region in the Canadian Atlantic Maritime 
Ecozone. It was done by transforming Ts into a 
potential surface temperature (θs), i.e. Ts with 
removed effect of elevation by recalculating the 
temperateure at the site for the mean sea level, 
and then combining it with NDVI (the method 
described as the temperature-vegetation-wetness 
index, TVWI) (Hassan et al. 2007b, Hassan and 
Bourque 2009). However, the TVWI approach 
requires further validation over other ecozones 
to determine its wider applicability.

On the other hand, several studies demon-
strated that remote sensing data were also effec-
tive in calculating GDD as a function of remote-
sensing based Ts (Hassan et al. 2007a, 2007c, 

Neteler 2010). In Hassan et al. (2007a, 2007c), 
the initial step was to convert the MODIS-
based 8-day composites of Ts (acquired between 
10:30 and 12:00) into 8-day mean values using 
an empirical relationship. This relationship was 
built by using ground-based emitted longwave 
radiation data (by way of applying Stefan-Boltz-
man’s equation; Langer et al. 2010). In reality, 
such longwave radiation data might be difficult 
to avail in other places. Thus, we propose to 
convert the MODIS-based Ts by establishing an 
empirical relation between Ts and the ground-
based air temperature (Ta) measured at the mete-
orological stations within the area of interest. In 
theory, the availability of such meteorological 
stations is relatively better across the globe (the 
networks of Ameriflux, fluxnet-Canada, Car-
boEurope, Chinaflux, etc.).

In this paper, we aim: (i) to implement the 
TVWI approach over the topographically-vari-
able agriculture and forest-dominated northern 
portion of the Canadian province of Alberta, and 
to assess its ability of capturing the ground-based 
measured volumetric soil moisture (VSM); (ii) 
to calculate GDDs over the growing season (i.e., 
April–October) by integrating MODIS-based Ts 
and ground-based Ta, and evaluating the mod-
eled GDD by comparing it with the ground-
based measured GDD.

Study area and data requirements

The extent of the study area is geographically 
between 53°–60°N and 108°–120°W (Fig. 1). 
It falls into the northern portion of the Canadian 
province of Alberta. It can be characterized as 
topographically variable (i.e., average elevation 
varies from 225 m to 1750 m a.s.l.) with the 
dominance of agriculture and forest land-cover 
types (see Fig. 1 for more details). The average 
annual temperature across the study area varies 
between –3.6 and +2.3 °C; the mean annual pre-
cipitation varies between 300–900 mm (Dowing 
and Pettapiece 2006).

In this study, we primarily used Moderate 
Resolution Imaging Spectroradiometer (MODIS 
based products freely available from the Land 
Processes Distributed Active Archive Center (LP 
DAAC: a component of NASA’s earth observing 
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system data and information system) (https://
lpdaac.usgs.gov/lpdaac/products/modis_prod-
ucts_table). Those included: (i) MOD11A2 ver. 
005: 8-day composites of Ts (generated by aver-
aging the clear-sky daytime Ts values over 8-day 
periods) at 1-km resolution in April–October  
2005–2008; (ii) MOD09Q1 ver. 005: 8-day com-
posites of red (620–670 nm) and near-infrared 
(NIR: 841–876 nm) surface reflectance at 250 m 
resolution in May–September 2006–2008; (iii) 
MOD13Q1 ver. 005: 16-day composite of EVI 
(enchanced vegetation index) at 250-m resolu-
tion during April–October 2005–2008. We also 
used a digital elevation model (DEM) of the 
study area at 250-m resolution generated from 
3-arc-second resolution height point-data freely 
available from the NASA Shuttle Radar Topog-
raphy Mission archive (http://srtm.csi.cgiar.org). 
In addition, we used ground-based measurements 
of daily mean: (i) Ta from 77 stations, freely 
available from Environment Canada (http://cli-
mate.weatheroffice.ec.gc.ca); (ii) VSM from 13 
stations (5-cm, 20-cm, 50-cm and 100-cm depths 
acquired using Theta-Probe-type ML2x), freely 
available from Alberta Agriculture and Rural 
Development Department (http://www.agric.
gov.ab.ca/app116/stationview.jsp) for the same 
period as the remote sensing data; and (iii) long-
term (i.e., 1971–2000) average GDD data from 
52 stations, freely available from Environment 
Canada (http://climate.weatheroffice.ec.gc.ca).

Methodology

The schematic diagram of the methodology 
(Fig. 2) has four major components: (i) data 
pre-processing, (ii) estimating TVWI values, (iii) 
generating GDD values, and (iv) comparing the 
TVWI and GDD values with respective ground-
based measurements.

Data pre-processing

The acquired raw MODIS-based surface reflect-
ance, Ts and EVI were originally provided in 
sinusoidal projection. We used a MODIS Repro-
jection Tool ver. 4.0 (freely available at https://
lpdaac.usgs.gov/lpdaac/tools/modis_reprojec-

tion_tool) to reproject the images into UTM 
Zone 12 NAD 83. Two contiguous images were 
mosaicked to achieve the desire study area, and 
again reprojected into Ten Degree Transverse 
Mercator (10TM) NAD 83 (a widely used pro-
jection system by the Alberta Government) as 
Zone 12 of the UTM projection was unable 
to span over the entire study area. Among the 
MODIS-based products, the surface reflectance 
images (MOD09Q1) were used to calculate 
NDVIs. We observed cloud contamination in 
both NDVI and Ts images. In order to correct 
this, we adopted an image correction technique 
developed by Hassan et al. (2007a, 2007b), 
which was used to fill the cloud-contaminated 
pixels in the NDVI and Ts time series. The for-
mulas are:

Fig. 1. The study area (53°–60°N, 108°–120°W) with 
a land-cover map derived from annual composite of 
2004 MODIS images (i.e., MOD12Q1 ver. 004; annual 
1-km composite of 2004 MODIS images). Crosses 
and circles indicate the locations where the ground-
based soil moisture data and GDD data were acquired, 
respectively.
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 , and (1)

 , (2)

where A is the average deviation of either Ts or 
NDVI from their respective ’s for a specific 
cloud-contaminated pixel of interest,  is the 
8-day composite mean value of either Ts or 
NDVI for a specific year for the entire image, i 
is the 8-day period of interest, and n is the total 
number of 8-day composite images in a year; xi 
the image-based Ts or NDVI value from cloud-
free 8-day composites, m is the total number 
of cloud-free pixels from individual composite 
images available for a specific year for a cloud-
contaminated pixel, and B is the estimated 8-day 
mean of either Ts or NDVI for an individual 
cloud-contaminated pixel.

Estimation of TVWI

The estimation of TVWI was performed in two 
steps proposed by Hassan et al. (2007b): (i) 

converting the Ts into θs; and (ii) interpreting the 
observed scatter plots of θs–NDVI.

To convert Ts into θs, the following expres-
sions were used (Hassan et al. 2007b, Hassan 
and Bourque 2009):

 , (3)

 , (4)

where p is the atmospheric pressure (kPa), z is 
the elevation above the mean sea level (m), Ts is 
the actual surface temperature (K); po is the aver-
age pressure at the mean sea level (= 101.3 kPa), 
R is the gas constant (= 287 J kg–1 K–1), Cp is the 
specific heat capacity of air (~1004 J kg–1 K–1), 
and θs is the potential surface temperature (K).

In general, we received trapezoidal shapes 
upon generating the scatter plots of θs–NDVI 
for each of the 8-day periods (see Fig. 3). Both 
the dry (i.e., θdry, K) and wet (i.e., θwet, K) edges 
describe available water conditions in relation to 
vegetation conditions. Along θdry, water for eva-
potranspiration is most likely unavailable, thus 
the values of TVWI would equal 0, and along 
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θwet, water for evapotranspiration is unrestricted, 
thus the values of TVWI would equal 1.

Finally, TVWI is calculated using the follow-
ing expression (Hassan et al. 2007b, Hassan and 
Bourque 2009):

 , (5)

Generation of GDD

In generating GDD maps, the following steps 
were carried out: (i) converting the MODIS-
based instantaneous 8-day composites of Ts into 
the equivalent 8-day mean Ta, and calculating the 
GDD values at 1-km resolution; and (ii) enhanc-
ing the spatial resolution of the GDD map from 1 
km to 250 m, so that it would be consistent with 
the spatial resolution of the TVWI maps.

The daily mean Ta values from 77 meteoro-
logical stations (see Fig. 1 for location informa-
tion) were transformed into 8-day means for 
the same 8-day periods as the MODIS data. For 
those stations, we also extracted the MODIS-
based instantaneous 8-day composites of Ts. 
Then, using Microsoft Excel 2007, we per-
formed a linear-regression analysis for these 
two variables (see Fig. 4a). It revealed that a 
reasonably strong relation existed (r2 ≈ 0.68, 
slope = 0.59 ± 0.01, intercept = 111.73 ± 3.09 at 
95% confidence level for the regression line, p < 
0.0001) during the period 2005–2007. In order 
to evaluate how the function given in Fig. 4a 
can predict the 8-day mean Ta, we used this rela-
tion to calculate Ta using 8-day MODIS-based 
Ts for 2008. The analysis revealed that also this 
relationship was reasonabley strong (r2 ≈ 0.67, 
slope = 0.65 ± 0.021, intercept = 99.71 ± 5.83 at 
95% confidence level for the regression line, p 
< 0.0001) between the measured and predicted 
values (see Fig. 4b). Both phases (calibration 
and validation, see Fig.  4) demonstrated simi-
lar levels of agreement (i.e., r2 ≈ 0.67), and the 
discrepancies (≈33% of the cases) were due to 
the fact that the Ta values were acquired at point 
locations but the MODIS-based Ts values were 
averages for 1 ¥ 1 km2 areas.

Considering the above, using the function 
given in Fig. 4a, we calculated equivalent 8-day 
mean Ta values. We then used these values in 

the following expression to calculate seasonally 
accumulated GDDs:

 , (6)

where Tbase equals 5 °C (= 278.15 K), and i 
and n are the first and the last 8-day period of 
the growing season, respectively, for which the 
8-day mean Ta values were calculated.

As the initial spatial resolution of the Ts data 
was 1 km, the generated GDDs would also be 
at the same resolution. In order to enhance their 
spatial resolution, we used the EVI images at the 
250-m resolution for data fusion as described in 
Hassan et al. (2007c). Such fusion was possible 
as the variables of EVI and GDD were found to 
be ecologically-related (Hassan et al. 2007a). 
With this method, an artificial image (AI) was 
generated for a 3 ¥ 3 moving window:

  (7)

where EVIins is the instantaneous value of EVI in 
the center of the moving window, and EVImean is 
the mean of all the EVI values within the moving 
window. In theory, AI is an index that explains 
the relation of an instantaneous value of EVI to 
the mean value of EVI within a given window. It 

Maximum 
transpiration

Normalized difference vegetation index (NDVI)

Dry edge,
θdry-1 = c1

Maximum 
evaporation

TVWI = 1

TVWI = 0

Wet edge, θwet

No 
transpiration

P
ot

en
tia

l s
ur

fa
ce

 te
m

pe
ra

tu
re

 (θ
s)

(NDVI, θs)

Dry edge,
θdry-2 = mNDVI + c1 

No
evaporation 

TVWI =
θdry – θs
θdry – θwet

Fig. 3. Conceptual diagram illustrated the calculations 
of TVWI as a function of θs and NDVI. Both of the dry 
edge (i.e., θdry) and wet edge (i.e., θwet) would describe 
the available water conditions in relation to vegetation 
conditions. c1 is the dry edge for θdry1; m and c2 are the 
slope and intercept for θdry2, respectively. Modified after 
Hassan et al. 2007b.



412	 Akther & Hassan  •  Boreal Env. Res. V ol. 16

also would act as a weight in the calculation of 
GDD at 250-m resolution:

 GDD250m = AI ¥ GDD1km, (8)

Validation schema

In this study, we generated a total of 60 TVWI 
images (i.e., for each 8-day interval) for 2006–
2008. At 13 stations (where the ground-based 
VSM data were acquired; see Fig. 1 for location 
information), we extracted the TVWI values. 
Then, we calculated an average TVWI value 
for each of the 8-day intervals. In a similar way, 
we averaged the ground-based measurement of 
VSM for each 8-day period of interest. Finally, 
we compared VSM values with the TVWI values 
both qualitatively and quantitatively (i.e., “per-
centage of deviation”).

In the case of GDD map, we calculated four 
seasonal cumulative GDD maps for the period 
2005–2008; and then generated an average sea-
sonal cumulative GDD map for the same period. 
In evaluating such an average seasonal cumula-
tive GDD map, we verified it against the long-
term average (i.e., for the period 1971–2000) 
seasonal ground-based cumulative GDD values 
from 52 meteorological stations (i.e., the subset 
of the 77 stations, where the ground-based Ta 
values were acquired) across the study area. In 
this case, we also verified how well the average 
seasonal cumulative GDD values generated with 

MODIS for 2005–2008 compared to ground 
measurements from 1971–2000 by calculating a 
percentage of deviation.

Results and discussion

An example scatter plot of θs–NDVI for the 
days of year (DOY) 153–160 in 2006 is shown 
in Fig. 5. The value of θdry1 was 318 K, and the 
slope and intercept of θdry2 were –0.0035 and 
344.25, respectively. As in Hassan et al. (2007b), 
the value of θwet was set at 275 K to establish 
the same baseline for determining the maximum 
values of TVWI (= 1) across the whole data 
series; also at 275 K seems to be sufficient to 
support evapotranspiration.

An analysis revealed that during 2006–2008 
TVWI were in better agreement with VSMs at 
the 50-cm and 100-cm depths rather than with 
that at 5 cm or 20 cm (see Fig. 6). Similar was 
also reported by e.g., Su et al. (2003). This 
phenomenon could be explained by the effect 
of high evapotranspiration on SM at deeper 
layers. The available SM in the upper soil layers 
(i.e., at 5–20 cm) would quickly be depleted 
due to higher evapotranspiration, which would 
then be supported by the upward movement 
of SM from deeper layers (≥ 50 cm) (Shuttle-
worth 1988, Lawrence et. al 2007). We further 
performed quantitative evaluation of TVWI and 
VSM for the 50-cm depth during 2006–2008 
(see Fig. 7). It revealed that the deviation was 
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within ±20% in 80% of the cases in 2006, in 
65% of the cases in 2007, and in all (100%) 
cases in 2008. On an average, in 81.67% of 
the cases, we observed the deviation within 
±20% for the period of interest. Besides, rela-
tively higher deviation (i.e., > ±20%) also could 
be expected as the ground-based measurements 
were at a point location, while remote sensing-
based estimates were an average values over 250 
¥ 250 m2. In another study (Hassan et al. 2007b), 
the temporal trend lines of the TVWI and VSM 
values were also found to be significantly related 
over a humid, forest-dominated region of eastern 
Canada. For example, the y intercepts of TVWI 
and VSM were on average 32.26% and 33.2%, 
respectively, during 2003–2005; with all slopes 
fairly close to 0. It was also demonstrated that 
the TVWI was strongly correlated with model-
derived SM (expressed in % of saturation) with 
r2 = 0.95.

We also evaluated the deviation between the 
long-term (1971–2000) average ground-based 
and MODIS-based average (during 2005–2008) 
GDD values from 52 stations (see Fig. 8). We 
observed that in 90.39% of the cases, the devia-
tions were within ±20%. In addition to the 
mentioned earlier reasons for discrepancies, the 
relatively smaller discrepancies (i.e., > ±20% 
in ~9.61% of the cases) between the two GDD 
datasets were also due to the representative 
periods (i.e., 2005–2008 for MODIS data, and 
1971–2000 for ground-based measurements). 
Similar agreements were also found by Hassan 
et al. (2007a), who demonstrated that when 
considering the MODIS-derived GDD values for 

2003–2005, at least 75% of the area within the 
ecoregion of the interest fell within the reported 
ranges of GDD values during 1951–1980 over 
the eastern Canadian province of New Bruns-
wick.

We produced the spatial distribution map of 
the averaged TVWI and GDD along with their 
respective relative frequency distributions (see 
Fig. 9). We found that in ~98.81% of the cases 
the TVWI values fell in the range of 0.2–0.6; 
with an average and standard deviation of ~0.44 
and ~0.083, respectively (see Fig. 9a). On the 
other hand, we found that in ~94.89% of the 
cases the GDD values fell in the range of 600–
1500; with an average and standard deviation of 
~977 and ~250, respectively (see Fig. 9b). The 
distinct spatial patterns of both TVWI and GDD 
are summarized as follows:
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•	 The higher TVWI values were found in the 
northern part of the study area, which might 
be associated with the lower GDD regimes.

•	 The GDD values were found to be decreasing 
towards the north which is associated with 
the gradual decrease in temperature in the 
same direction.

•	 In general, the lower TVWI values were 
mainly observed over agriculture-dominant 
areas, whereas the higher TWVI values were 
observed over forest-dominant regions. It 
might be related to the fact that dense veg-
etation is able to retain water in the ground 
better than relatively less vegetated areas.

•	 We also found that higher GDD values coin-
cided in the same area with relatively lower 

TVWI values and vice versa. These, in par-
ticular, indicate that vegetation plays a key 
role in regulating its surrounding climatic 
regimes.

•	 The TVWI method may be applicable in 
other ecosystems for assessing VSM condi-
tions over topographically variable forest-
dominated regions.

•	 The GDD method may be efficient in captur-
ing GDDs in different ecosystem, however, 
calibration of the remote sensing data is nec-
essary.

Concluding remarks

In this paper, we demonstrated the effective-
ness of the TVWI approach in capturing the 
spatial dynamics of surface wetness conditions 
over agriculture and forest-dominant regions. 
We found that it could be used as an indirect 
way of determining soil moisture, because the 
deviation between the TVWI values and ground-
based VSM were found to be within ±20% in 
81.67% of the cases. In terms of GDD, we also 
demonstrated that our method (i.e., integration 
of MODIS-based Ts and ground-based Ta) was 
able to depict the spatial variability. We found 
that the relations between the MODIS-predicted 
and ground-based GDD values were also rea-
sonably strong (i.e., within ±20% in 90.33% of 
the cases). Hence, it seems that remote-sensing 
techniques are suitable for determining these 
variables over other areas.
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Fig. 7. Deviation between the averaged ground-based measurements of VSM and TVWI for the period 2006–2008.

Fig. 8. Comparison between the long-term (1971–
2000) average ground-based and MODIS-based aver-
age (during 2005–2008) GDD values from 52 stations.
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